ALPs: light-shining-through-walls with JURA

Annual Workshop
16 January 2018

Axel Lindner
Brief scientific motivation

Light-shining-through-walls with resonant regeneration and status of ALPS II at DESY

JURA: exploiting the power of modern dipole magnets

Summary
ALP searches: different experimental approaches

<table>
<thead>
<tr>
<th>ALP parameter</th>
<th>LSW (laboratory)</th>
<th>Helioscopes</th>
<th>Dark matter searches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parity and spin</td>
<td>yes</td>
<td>perhaps</td>
<td>yes</td>
</tr>
<tr>
<td>Coupling $g_{a\gamma\gamma}$</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Coupling · flux (does not apply)</td>
<td>(does not apply)</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Mass</td>
<td>perhaps</td>
<td>perhaps</td>
<td>yes</td>
</tr>
<tr>
<td>Electron coupling</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Rely on astrophysical assumptions</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>QCD axion</td>
<td>no (?)</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

LSW allows for model independent searches and definite coupling determination.
New hints for ALPs from supernova remnants and pulsars:

- If the line-of-sight passes magnetic field regions photons might oscillate into ALPs.
 - The “missing photons” would introduce distinct spectral features.

- Such an effect seems to show up in a parameter region already excluded by CAST.
 - Suppression of ALP production in the sun?
 - More detailed spectral analyses seem to be required to confirm / disprove these observations. Ongoing with DESY-Zeuthen colleagues.

- LSW experiments will finally clarify the ALP-interpretation.
Single-pass LSW:

Need to be improved in sensitivity for $g_{\alpha\gamma\gamma}$ by about three orders of magnitude to probe astrophysical hints for ALPs.

- Stellar evolutions,
- TeV transparency of the universe,
- spectral features of SNR and pulsars.

Note: experimental sensitivity $\sim g_{\alpha\gamma\gamma}^4$.
Realize the concept of resonant regeneration about 30 years after its first proposal.

> Mode-matched optical cavities before and behind the “wall”.

\[P_{\gamma\to\phi\to\gamma} = \frac{1}{16} \cdot F_{PC} F_{RC} \cdot (g_{a\gamma\gamma} B l)^4 = 6 \cdot 10^{-38} \cdot F_{PC} F_{RC} \cdot \left(\frac{g_{a\gamma\gamma}}{10^{-10} GeV^{-1}} \frac{B}{1 T} \frac{l}{10 m} \right)^4 \]

ALPS II at DESY:

> Collaboration of particle physics and aLIGO / GEO 600 groups (AEI Hanover, U. of Cardiff, U. of Gainesville (FL)).
> Optics R&D since 2012.
> Based on string of 10+10 straightened HERA dipole magnets.
> Construction of the experiment in the HERA tunnel started early 2018.
> Aim for start-up end of 2020.
Joint Undertaking on Research for Any-light particles

\[P_{\gamma\phi\to\gamma} = \frac{1}{16} \cdot F_{PC} \cdot F_{RC} \cdot (g_{a\gamma\gamma} B l)^4 = 6 \cdot 10^{-38} \cdot F_{PC} \cdot F_{RC} \cdot \left(\frac{g_{a\gamma\gamma}}{10^{-10} \text{GeV}^{-1}} \cdot \frac{B}{1 \text{T}} \cdot \frac{l}{10 \text{m}} \right)^4 \]

to overcome the principle limitations of ALPS II:
- Limited field strength of the HERA dipoles (5.3 T),
- limited aperture (eff. 50 mm) limiting the length of optical resonators due to clipping.

A future option for searching axion-like particles through light-shining-through-a-wall experiments:

JURA (Joint Undertaking on Research for Any light particles)

Axel Lindner (DESY), Andrzej Siemko (CERN), Herman Ten Kate (CERN), Benno Willke (AEI Hanover)

29 July 2018
Joint Undertaking on Research for Any-light particles could be based on

- LHC dipoles,
- magnets under development for a HE-LHC or FCC (without the inner HTS section) and
- some (challenging) upgrades of the optics and detector systems.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sensitivity</th>
<th>ALPS II</th>
<th>JURA</th>
<th>Rel. sensitivity JURA / ALPS II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnet aperture</td>
<td></td>
<td>50 mm</td>
<td>100 mm</td>
<td></td>
</tr>
<tr>
<td>Magnetic field B</td>
<td>$g_{SW} \sim B^{-1}$</td>
<td>5.3 T</td>
<td>13 T</td>
<td>2.5</td>
</tr>
<tr>
<td>Magnetic length L</td>
<td>$g_{SW} \sim L^{-1}$</td>
<td>189 m</td>
<td>960 m</td>
<td>5.1</td>
</tr>
<tr>
<td>Effective laser power P</td>
<td>$g_{SW} \sim P^{-1/4}$</td>
<td>0.15 MW</td>
<td>2.5 MW</td>
<td>2.0</td>
</tr>
<tr>
<td>Power-built up Q (behind the wall)</td>
<td>$g_{SW} \sim Q^{-1/4}$</td>
<td>40,000</td>
<td>100,000</td>
<td>1.3</td>
</tr>
<tr>
<td>Detector noise DC</td>
<td>$g_{SW} \sim DC^{1/8}$</td>
<td>10^{-4} 1/s</td>
<td>10^{-6} 1/s</td>
<td>1.8</td>
</tr>
<tr>
<td>Total sens. increase</td>
<td></td>
<td></td>
<td></td>
<td>56</td>
</tr>
</tbody>
</table>

Table 1: Comparison of experimental parameters of ALPS II at DESY and the JURA proposal.
Joint Undertaking on Research for Any-light particles could reach sensitivities beyond IAXO for lightweight ALPs.

Figure 1: the experimental reach of JURA for ALP-photon couplings.
A stepwise approach of JURA

Proposed by the PBC technology subgroup (see presentation by A. Siemko):

- babyJURA: 1+1 LHC dipoles, optical system similar to ALPS II.
- JURA 1: 4+4 LHC dipoles, similar sensitivity as ALPS II.
- JURA 2: FCC dipoles (modified).

Due to the necessity of long strings of modern superconducting accelerator dipole magnets CERN appears to be a natural site for JURA.

The required optics expertise needs to be secured.

JURA activities could start in about 2023.
JURA drives model independent axion-like particle searches to its limits by combining “ultimate” dipoles, optics and detectors.

- In size and costs it would go significantly beyond any other experiment searching for lightweight Weakly Interacting Slim Particles (WISPs).
- At present the physics case is not settled, but this might quickly change with results from
 - ALPS II,
 - babyIAXO and later IAXO.
- To secure and bundle expertise (especially in optics) the start of “pre-JURA” activities should happen in parallel to ALPS II data taking (2022).

JURA could become the LHC for WISP searches!