SHiP status report

E. Graverini for the SHiP collaboration

Physics Beyond Colliders annual workshop: January 16, 2019
Hidden sector at the BDF

- NP should exist, but we don’t know its scale
- Many theories predict light weakly interacting LLPs
 - Light dark matter
 - Hidden sector: neutrino, vector, scalar, axion portals
- Production $\mathcal{B} \sim 10^{-10}$, decay to SM:
 - high-intensity beam
- **BDF @ CERN SPS:**
 - $\chi_{c\bar{c}} \sim 2 \times 10^{-3}$, $\chi_{b\bar{b}} \sim 2 \times 10^{-7}$
2 × 10^{20} \textit{pot} in 5 years: > 10^{18}D, > 10^{16}\tau

- zero background beam dump expt. with spectrometry and PID
- large geometrical acceptance: long volume close to dump
- complementary detectors for scattering/decay signatures
Muon shield

- magnetized hadron stopper: immediately separate μ^\pm
 \implies reduce length of magnet system
- magnetic field configuration optimised with ML
 \implies μ rate reduced to ~ 25 kHz
- note: μ spectrum validated with dedicated expt. (see later)
Scattering and Neutrino Detector: ν physics

- distinguish e, μ, τ and hadrons
- major revision following muon shield optimization: $80 \times 80 \times 300$ cm3, simplified detector
- Target (Emulsion Cloud Chamber + Compact Emulsion Spectrometer) + Downstream Tracker

<table>
<thead>
<tr>
<th></th>
<th>\bar{E} [GeV]</th>
<th>CC DIS int.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_e</td>
<td>59</td>
<td>1.1×10^6</td>
</tr>
<tr>
<td>ν_μ</td>
<td>42</td>
<td>2.7×10^6</td>
</tr>
<tr>
<td>ν_τ</td>
<td>52</td>
<td>3.2×10^4</td>
</tr>
<tr>
<td>$\bar{\nu}_e$</td>
<td>46</td>
<td>2.6×10^5</td>
</tr>
<tr>
<td>$\bar{\nu}_\mu$</td>
<td>36</td>
<td>6.0×10^5</td>
</tr>
<tr>
<td>$\bar{\nu}_\tau$</td>
<td>70</td>
<td>2.1×10^4</td>
</tr>
</tbody>
</table>
Scattering and Neutrino Detector: LDM

- light dark matter scattering in the emulsion spectrometer
- $\bar{\nu}_e p \rightarrow e^+ n$ background reduced using correlation between e^+ angle and energy
Scattering Spectrometer: status

- CES tested at CERN PS in 2017
- μ-RWELL or SciFi for tracking, both tested on beam (2018)
- μ ID system: RPC tested in CERN H4 in summer 2018
Scattering Spectrometer: status

- CES tested at CERN PS in 2017
- μ-RWELL or SciFi for tracking, both tested on beam (2018)
- μ ID system: RPC tested in CERN H4 in summer 2018
Scattering Spectrometer: status

- CES tested at CERN PS in 2017
- μ-RWELL or SciFi for tracking, both tested on beam (2018)
- μ ID system: RPC tested in CERN H4 in summer 2018
Scattering Spectrometer: status

- CES tested at CERN PS in 2017
- μ-RWELL or SciFi for tracking, both tested on beam (2018)
- μ ID system: RPC tested in CERN H4 in summer 2018
Decay Spectrometer

- surround background tagger
- straw spectrometer
- EM calorimeter
- Timing detector
- Muon detector

- 0 background \rightarrow 2 candidates are a discovery
- measure candidates mass and identify final state
 \rightarrow narrow down physics models
Decay Spectrometer: status

SBT Several improvements \(w.r.t. \) TP. Tested on beam Oct. 2018

SST Straw \(\phi \) increased to 20mm. Tested on beam: \(\sigma_{\text{hit}} \approx 120 \mu \text{m} \)

TD Plastic scint + large-area SiPMs feasible, large-scale prototype yields \(\sigma_t \approx 80 \text{ps} \). RPC alternative tested Oct. 2018 with \(\sigma_t \approx 54 \text{ps} \)

ECAL SplitCal with 3 high-res layers for \(ALP \rightarrow \gamma \gamma \) (\(\sigma_\theta \sim \text{few mrad} \))
- measure barycentre at 3 depths with MPGDs; \(> 1 \text{ m lever arm} \)

MUON move to scintillating tiles with SiPM readout. Beam test Oct. 2018, aim at \(\sigma_t < 200 \text{ps} \)
Decay Spectrometer: status

SBT Several improvements *w.r.t.* TP. Tested on beam Oct. 2018

SST Straw \varnothing increased to 20mm. Tested on beam: $\sigma_{\text{hit}} \approx 120\mu$m

TD Plastic scint + large-area SiPMs feasible, large-scale prototype yields $\sigma_t \approx 80$ps. RPC alternative tested Oct. 2018 with $\sigma_t \approx 54$ps

ECAL SplitCal with 3 high-res layers for $ALP \rightarrow \gamma\gamma$ ($\sigma_\theta \sim$ few mrad)
- measure barycentre at 3 depths with MPGDs; > 1 m lever arm

MUON move to scintillating tiles with SiPM readout. Beam test Oct. 2018, aim at $\sigma_t < 200$ps
Decay Spectrometer: status

SBT Several improvements w.r.t. TP. Tested on beam Oct. 2018

SST Straw \varnothing increased to 20mm. Tested on beam: $\sigma_{\text{hit}} \approx 120\mu\text{m}$

TD Plastic scint + large-area SiPMs feasible, large-scale prototype yields $\sigma_t \approx 80\text{ps}$. RPC alternative tested Oct. 2018 with $\sigma_t \approx 54\text{ps}$

ECAL SplitCal with 3 high-res layers for $\text{ALP} \rightarrow \gamma\gamma$ ($\sigma_\theta \sim \text{few mrad}$)
- measure barycentre at 3 depths with MPGDs; $> 1\text{ m lever arm}$

MUON move to scintillating tiles with SiPM readout. Beam test Oct. 2018, aim at $\sigma_t < 200\text{ps}$
Decay Spectrometer: status

SBT Several improvements *w.r.t.* TP. Tested on beam Oct. 2018

SST Straw ϕ increased to 20mm. Tested on beam: $\sigma_{\text{hit}} \approx 120\mu$m

TD Plastic scint + large-area SiPMs feasible, large-scale prototype yields $\sigma_t \approx 80$ps. RPC alternative tested Oct. 2018 with $\sigma_t \approx 54$ps

ECAL SplitCal with 3 high-res layers for $\text{ALP} \rightarrow \gamma\gamma$ ($\sigma_\theta \sim \text{few mrad}$)
 - measure barycentre at 3 depths with MPGDs; > 1 m lever arm

MUON move to scintillating tiles with SiPM readout. Beam test Oct. 2018, aim at $\sigma_t < 200$ps
Decay Spectrometer: status

SBT Several improvements w.r.t. TP. Tested on beam Oct. 2018

SST Straw \varnothing increased to 20mm. Tested on beam: $\sigma_{\text{hit}} \approx 120\mu\text{m}$

TD Plastic scint + large-area SiPMs feasible, large-scale prototype yields $\sigma_t \approx 80\text{ps}$. RPC alternative tested Oct. 2018 with $\sigma_t \approx 54\text{ps}$

ECAL SplitCal with 3 high-res layers for $ALP \rightarrow \gamma\gamma$ ($\sigma_\theta \sim \text{few mrad}$)
 – measure barycentre at 3 depths with MPGDs; $> 1 \text{ m lever arm}$

MUON move to scintillating tiles with SiPM readout. Beam test Oct. 2018, aim at $\sigma_t < 200\text{ps}$
SHiP simulation / validation

▶ based on FairRoot, uses:
 – Pythia8 for \(p \)-on-target collisions, tuned to include production of \(c, b \) mesons from secondaries
 – Geant4 for propagation through the target and detector material. \(V^0 \to \mu\mu, \gamma \to \mu\mu, ee \to \mu\mu \) activated and boosted
 – Genie for neutrino interactions
▶ several HS models added/extended (HNL, \(\gamma' \), \(S \), RPV \(\tilde{\chi}^0 \) ...)
▶ \(1.8 \times 10^9 / 6.5 \times 10^{10} \) \textit{pot} simulated with \(E_{th} = 1 / 10 \) GeV
▶ \(\mu \) MS and catastrophic energy loss validated with existing data

Data from HYPERON

![Data from HYPERON](image)

NA62 LKr

![Data from NA62 LKr](image)
Charm / μ flux measurements (July 2018)

- replica of BDF target + drift tube spectrometer + RPC μ tagger
- $\sim 6 \times 10^{11}$ pot recorded, analysis ongoing

- measure of charm production essential for HS and ν_τ studies
- lead target + ECC. 1.6×10^6 pot + 10× run after LS2
Hidden sector: physics performance

- setup ideally suited for any weakly interacting LLP

<table>
<thead>
<tr>
<th>Cut</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track momentum</td>
<td>> 1.0 GeV/c</td>
</tr>
<tr>
<td>Children distance of closest approach</td>
<td>< 1 cm</td>
</tr>
<tr>
<td>Decay vertex position</td>
<td>(> 5 cm from inner wall)</td>
</tr>
<tr>
<td>IP w.r.t. target (fully reconstructed)</td>
<td>< 10 cm</td>
</tr>
<tr>
<td>IP w.r.t. target (partially reconstructed)</td>
<td>< 250 cm</td>
</tr>
</tbody>
</table>

- event selection: high signal efficiency + redundant BG suppression
- common selection (model independent search)
- redundancy cuts:
 - associated activity in VETO systems
 - PID cuts
 - time coincidence (suppress combinatorial background)
 - opening angle (reject events from γ conversions in the material)
Hidden sector: backgrounds

- **Muon combinatorial:**
 - 10^{16} selection $\rightarrow 10^9$ $\Delta t < 340 \text{ps}$ $\rightarrow 10^{-2}$ candidates in 5 years @ 90%CL
 - ML used to generate large sample of dangerous μ

- **Muon inelastic:**
 - 5 years of SHiP operation simulated
 - correlation between VETO and selection: $< 6 \times 10^{-4}$ @ 90%CL

- **ν interactions:**
 - 10 years of SHiP simulated, increasing to 100
 - ν-air: $< 10^{-2}$ in 5 years with pressure ~ 1 mbar
 - ν-material: 5×10^5 cuts (fully reco) $\rightarrow 0$
 cuts (part. reco) $\rightarrow 2$ opening angle $\rightarrow 0$ @ 90%CL
Hidden sector: backgrounds

▶ Muon combinatorial:
 - 10^{16} selection
 - ML used to generate large sample of dangerous μ

▶ Muon inelastic:
 - 5 years of SHiP operation simulated
 - correlation between VETO and selection: $< 6 \times 10^{-4} @ 90\% CL$

▶ ν interactions:
 - 10 years of SHiP simulated, increasing to 100
 - ν-air: $< 10^{-2}$ in 5 years with pressure \sim 1 mbar
 - ν-material: 5×10^5 @ 90%CL
Hidden sector: backgrounds

▶ Muon combinatorial:
- 10^{16} selection $\rightarrow 10^9$
- ML used to generate large sample of dangerous

▶ Muon inelastic:
- 5 years of SHiP operation simulated
- correlation between VETO and selection: $< 6 \times 10^{-4}$ @ 90% CL

▶ ν interactions:
- 10 years of SHiP simulated, increasing to 100
- ν-air: $< 10^{-2}$ in 5 years with pressure ~ 1 mbar
- ν-material: 5×10^5
 \[
 \begin{align*}
 \text{cuts (fully reco)} & \rightarrow 0 \\
 \text{cuts (part. reco)} & \rightarrow 2 \\
 \text{opening angle} & \rightarrow 0 \\
 \end{align*}
 @ 90% CL
Hidden sector: backgrounds

- Muon combinatorial:
 - \(10^{16}\) selection \(\rightarrow\) \(10^9\) \(\Delta t < 340\text{ps}\) \(\rightarrow\) \(10^{-2}\) candidates in 5 years @ 90% CL
 - ML used to generate large sample of dangerous \(\mu\)

- Muon inelastic:
 - 5 years of SHiP operation simulated
 - correlation between VETO and selection: \(< 6 \times 10^{-4}\) @ 90% CL

- \(\nu\) interactions:
 - 10 years of SHiP simulated, increasing to 100
 - \(\nu\)-air: \(< 10^{-2}\) in 5 years with pressure \(\sim 1\) mbar
 - \(\nu\)-material: \(5 \times 10^5\) \(\left\{ \begin{array}{c}
\text{cuts (fully reco)} \rightarrow 0 \\
\text{cuts (part. reco)} \rightarrow 2 \\
p\text{opening angle} \rightarrow 0
\end{array} \right\}
\) @ 90% CL
Physics performance: HNL

- HNL production and decay B’s revised
 [JHEP11(2018)032]
- cascade production of charm and beauty
 [SHiP-NOTE-2015-009]
- flavour-independent sensitivity matrix including B_c contribution
- HNL identification and discovery reach close to seesaw limit
- great sensitivity also in U^2_τ-enhanced scenario
Physics performance: HNL

- HNL production and decay B's revised
 - [JHEP11(2018)032]
- cascade production of charm and beauty
 - [SHiP-NOTE-2015-009]
- flavour-independent sensitivity matrix including B_c contribution
- HNL identification and discovery reach close to seesaw limit
- great sensitivity also in $U_{	au}^2$-enhanced scenario
Physics performance: HNL

- HNL production and decay B''s revised
- cascade production of charm and beauty
- flavour-independent sensitivity matrix including B_c contribution
- HNL identification and discovery reach close to seesaw limit
- great sensitivity also in U^2_{τ}-enhanced scenario

[hep-ph/1811.00930] [PBC-REPORT-2018-007]

[SHiP-NOTE-2015-009]

[JHEP11(2018)032]
Physics performance

- **Dark photon:**
 - meson decays, proton bremsstrahlung, $qq \rightarrow \gamma'$
 - expect improvements at low mass from:
 - cascade production
 - EM showers

- **Dark scalar:**
 - couple to Higgs in FCNC K and B decays

- **Axion-like particles:**
 - couple to fermions and to photons
 - SplitCal developed for $ALP \rightarrow \gamma\gamma$
Physics performance

- **Dark photon:**
 - meson decays, proton bremsstrahlung, $qq \rightarrow \gamma'$
 - expect improvements at low mass from:
 - cascade production
 - EM showers

- **Dark scalar:**
 - couple to Higgs in FCNC K and B decays

- **Axion-like particles:**
 - couple to fermions and to photons
 - SplitCal developed for $ALP \rightarrow \gamma\gamma$
Short term plans (2019–2021)

- finalize analysis of μ spectrum measurement
- preparation of CDR (submission to SPSC in fall 2019)
- continue phase 2 module-level prototyping for test beams
 - at DESY (2019-2010)
 - at CERN (2021)
- prepare complete meas. of charm production at CERN in 2021
- detector engineering design and preparation of TDR
Short term plans (2019–2021)

- finalize analysis of μ spectrum measurement
- preparation of CDR (submission to SPSC in fall 2019)
- continue phase 2 module-level prototyping for test beams
 - at DESY (2019-2010)
 - at CERN (2021)
- prepare complete meas. of charm production at CERN in 2021
- approval?
- detector engineering design and preparation of TDR
Short term plans (2019–2021)

- finalize analysis of μ spectrum measurement
- preparation of CDR (submission to SPSC in fall 2019)
- continue phase 2 module-level prototyping for test beams
 - at DESY (2019-2010)
 - at CERN (2021)
- prepare complete meas. of charm production at CERN in 2021
- approval:
- detector engineering design and preparation of TDR
Conclusions + Outlook

- major design changes since TP
- all sub-detector’s phase 1 prototypes tested with nice results
 - schedule driven by SPS/LHC schedule: installation LS3
 - phase 2 prototyping → TDR second half of 2021
- many improvements on background evaluation and sensitivities
 - working hard to simulate more rare events

- comprehensive search for weakly interacting LLPs @ SPS
- complement CERN’s energy frontier and flavour programme
Conclusions + Outlook

- major design changes since TP
- all sub-detector’s phase 1 prototypes tested with nice results
 - schedule driven by SPS/LHC schedule: installation LS3
 - phase 2 prototyping → TDR second half of 2021
- many improvements on background evaluation and sensitivities
 - working hard to simulate more rare events

- comprehensive search for weakly interacting LLPs @ SPS
- complement CERN’s energy frontier and flavour programme