REDTOP

Rare Eta Decays with a TPC for Optical Photons

R. Carosi, INFN Pisa Workshop on Physics Beyond Colliders CERN, 16 jan. 2019

For the REDTOP Collaboration

REDTOP Key Points

- Yield of $8x10^{12} \eta$ mesons/year for 10^{17} POT (x-section >10 mbarns, 1.8 GeV proton beam)
 - Possibly ~8x10¹⁰ η' mesons/years in a second phase (3.5 GeV protons)
- 4π detector coverage (almost)
- 3 (5) "golden" channels (will be described in details in the proposal)
 - But at least ~20 interesting channels (simmetry violations, new particles and forces searches, precision measurements)
 - 4 benchmark channels are studied in details for the BPC (2 of them are golden)
- Innovative detector techniques
 - Dual readout calorimeter
 - Optical TPC
- Detector blind to protons and slow pions
- Significant improvement (106 in some cases) to the current limits.
- http://redtop.fnal.gov

Why the η?

- Decays are flavor conserving
- Eigenstate of C, P, CP and G: IGJPC=0+0-+
 - can be used to test C and CP invariances
- Very narrow state (1.3 keV) overconstraints events → low background
- Strong decays forbidden in lowest order by C, P, CP, G, and Isospin invariance
- EM decays forbidden in lowest order by C and angular momentum conservation
 - contributions from higher orders are enhanced by a factor of ~100,000
 - η decays with leptons in the final state have very small SM backgrounds
 - Internal loops and lepton pairs can probe new physics
- η is an excellent laboratory to search for physics Beyond Standard Model

BSM Physics Program (η and η' factory)

C, T, CP-violation

- □ CP Violation via Dalitz plot mirror asymmetry: $\eta \rightarrow \pi^{\circ} \pi^{+} \pi^{-}$
- ullet CP Violation (Type I P and T odd , C even): $\eta -> 4\pi^{\circ} \rightarrow 8\gamma$
- □ CP Violation (Type II C and T odd , P even): $\eta \to \pi^{\circ}$ I⁺I **and** $\eta \to 3\gamma$
- □ Test of CP invariance via μ longitudinal polarization: $\eta \rightarrow \mu^+\mu^-$
- □ Test of CP invariance via γ^* polarization studies: $\eta \to \pi^+\pi^-e^+e^-$ and $\eta \to \pi^+\pi^-\mu^+\mu^-$
- □ Test of CP invariance in angular correlation studies: $\eta \rightarrow \mu^+\mu^-e^+e^-$
- □ Test of T invariance via μ transverse polarization: $\eta \to \pi^{\circ} \mu^{+} \mu^{-}$ and $\eta \to \gamma \mu^{+} \mu^{-}$
- CPT violation: μ polariz. in $\eta \to \pi^+ \mu^- v$ vs $\eta \to \pi \mu^+ v$ and γ polarization in $\eta \to \gamma \gamma$

Other discrete symmetry violations

- □ Lepton Flavor Violation: $η \rightarrow μ^+e^- + c.c.$
- □ Double lepton Flavor Violation: $\eta \rightarrow \mu^+\mu^+e^-e^- + c.c.$

BSM Physics Program (η and η' factory)

New particles and forces searches

- □ Scalar meson searches (charged channel): $\eta \to \pi^{\circ} H$ with $H \to e^+e^-$ and $H \to \mu^+\mu^-$
- □ Dark photon searches: $\eta \rightarrow \gamma A'$ with $A' \rightarrow I^+I^-$
- □ Protophobic fifth force searches : $\eta \rightarrow \gamma X_{17}$ with $X_{17} \rightarrow e^+e^-$
- □ New leptophobic baryonic force searches : $\eta \rightarrow \gamma B$ with $B \rightarrow e^+e^-$ or $B \rightarrow \gamma \pi^\circ$
- □ Indirect searches for dark photons new gauge bosons and leptoquark: $\eta \rightarrow \mu^+\mu^-$ and $\eta \rightarrow e^+e^-$
- □ Search for true muonium: $\eta \rightarrow \gamma(\mu^+\mu^-)|_{2M_u} \rightarrow \gamma e^+e^-$

Other Precision Physics measurements

- Proton radius anomaly: $\eta \rightarrow \gamma \mu^+ \mu^- \text{ vs } \eta \rightarrow \gamma \text{ e}^+ \text{e}^-$
- □ All unseen leptonic decay mode of η / η ' (SM predicts 10-6 -10-9)

BSM Physics Program (η and η ' factory)

Non- η/η' based BSM Physics

- □ Dark photon and ALP searches in Drell-Yan processes: $qqbar \rightarrow A'/a \rightarrow I^+I^-$
- □ ALP's searches in Primakoff processes: $p Z \rightarrow p Z a \rightarrow I^+I^-$ (F. Kahlhoefer)
- Charged pion and kaon decays: $\pi + \rightarrow \mu^+ v A' \rightarrow \mu^+ v e^+ e^-$ and $K + \rightarrow \mu^+ v A' \rightarrow \mu^+ v e^+ e^-$
- □ Neutral pion decay: $\pi^{\circ} \rightarrow \gamma A' \rightarrow \gamma e^{+}e^{-}$

Non-BSM Physics Program (η and η ' factory)

High precision studies on low energy physics

- Nuclear models
- Chiral perturbation theory
- Non-perturbative QCD
- Isospin breaking due to the u-d quark mass difference
- Octet-singlet mixing angle
- ππ interactions
- Electromagnetic transition form-factors (important input for g-2)
- Lots of other bread&butter physics

Beam and η yield

- Incident proton energy ~1.8 GeV (3.5 for η')
- Continuous beam, 10¹⁷ POT/yr
 - At Fermilab: ~1018 p/yr
- Target system: 10x0.5 mm Li or 10x0.33 mm Be spaced 10 cm apart
 - Low Z (primary hadrons multiplicity ~A^{1/3})
- p-inelastic production: 2x10⁸ evts/sec
- Large beam spot size (~1 cm) with small divergence (<10)
- Eta production: 8x10¹² η/year
 - At Fermilab: 8x10¹³ η/year

Detection Techniques

Charged Tracks Detection

- Use Cherenkov effect in an Optical-TPC for tracking charged particles
- Baryons and most pions are below Cherenkov threshold
- Electrons and most muons are detected and reconstructed
- Fiber-tracker for vertexing and rejection of gamma conversion (being investigated)

Gamma Detection

- Use ADRIANO2 calorimeter for reconstructing EM showers
- Resolution <5%/sqrt(E)
- PID from dual-readout to disentangle showers from γ/μ/hadrons
- 96.5% coverage
- High granularity
- Good time resolution (<100 psec) for high rate DAQ

Simulation and PCB benchmarks

- Simulation tools ready (slic, lcsim, ilcroot frameworks)
 - Full simulation, including background and efficiencies
 - Only missing full reconstruction in the OTPC
- 10-15 years timescale and 10¹⁷ pot/year
- Ongoing simulations for PBC benchmarks (Visible final states)
 - Dark photons (BC 1) η → γ A' → ℓ + ℓ -
 - Dark scalars mixing with the Higgs (BC 4,5) η → π^0 H → ℓ - ℓ - ℓ -
 - ALP coupled with fermions (BC 10)
 - ALP with Primakoff processes (BC 11) pZ → pZ a → l+l-

PCB benchmarks

(from PBC report, Cern 2018/007)

Dark photons

Dark scalar mixing with Higgs

PCB benchmarks

(from PBC report, Cern 2018/007)

ALP with fermion coupling

ALP with gluon coupling

Status and Plan

- Cost: ~ 50 M\$
- Beam: under study (PS, 10¹⁷ p/yr)
- Detector
 - ADRIANO2 prototype funded by NIU, INFN
 - Fiber Tracker (LHCb like)
 - OTPC: not started
- Simulation:
 - In 2019, repeat the studies with secondary vertex reconstruction
 - (BSM particles have long lifetimes)
- Proposal to SPSC by ~ mid 2020 (after ESPP process)

Summary

- The η/η ' meson is an excellent laboratory for studying rare processes
- Existing world samples not sufficient for studying decays violating conservations laws
- REDTOP goal is to produce ~1013 η mesons/year in phase I and ~ 1011 η '/year in phase II
- Very rich physics program, including "golden" processes:
 - CP violation via Dalitz plot mirror asymmetry
 - Dark photons
 - Scalar meson searches
 - Axion-like particles
- New generation, super-fast detector techniques
- An exciting phase of detector R&D ahead
- The collaboration is still forming
- Full proposal ~ mid 2020
- http://redtop.fnal.gov

Thank you!

Backup slides

$$\eta$$
: $\approx \frac{u\bar{u}+dd-2s\bar{s}}{\sqrt{6}}$
 η' : $\approx \frac{u\bar{u}+d\bar{d}+s\bar{s}}{\sqrt{3}}$

$$\eta$$

$$I^{G}(J^{PC}) = 0^{+}(0^{-})$$

Mass $m=547.862\pm0.017$ MeV Full width $\Gamma=1.31\pm0.05$ keV

C-nonconserving decay parameters

$$\begin{array}{ll} \pi^+\pi^-\pi^0 & \text{left-right asymmetry} = (0.09^{+0.11}_{-0.12}) \times 10^{-2} \\ \pi^+\pi^-\pi^0 & \text{sextant asymmetry} = (0.12^{+0.10}_{-0.11}) \times 10^{-2} \\ \pi^+\pi^-\pi^0 & \text{quadrant asymmetry} = (-0.09 \pm 0.09) \times 10^{-2} \\ \pi^+\pi^-\gamma & \text{left-right asymmetry} = (0.9 \pm 0.4) \times 10^{-2} \\ \pi^+\pi^-\gamma & \beta \ (\textit{D-wave}) = -0.02 \pm 0.07 \ \ (\text{S} = 1.3) \end{array}$$

CP-nonconserving decay parameters

$$\pi^+\pi^-e^+e^-$$
 decay-plane asymmetry $A_\phi=(-0.6\pm3.1)\times10^{-2}$

Dalitz plot parameter

$$\pi^0\pi^0\pi^0$$
 $\alpha=-0.0318\pm0.0015$ PARAMETER Λ IN $\eta\to~\mu^+\mu^-\gamma$ DECAY = 0.719 \pm 0.014 GeV/ c^2

η DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	p (MeV/c)				
Neutral modes							
neutral modes	(72.12±0.34) %	S=1.2	_				
2γ	(39.41±0.20) %	S=1.1	274				
$3\pi^0$	(32.68±0.23) %	S=1.1	179				
$\pi^0 2\gamma$	$(2.56 \pm 0.22) \times 1$	10-4	257				
$2\pi^0 2\gamma$	< 1.2 × 1	10 ⁻³ CL=90%	238				
4 γ	< 2.8 × 1	10 ⁻⁴ CL=90%	274				
invisible	< 1.0 ×	10 ⁻⁴ CL=90%	_				
Charged modes							
charged modes	(28.10±0.34) %	S=1.2	_				
$\pi^{+}\pi^{-}\pi^{0}$	(22.92±0.28) %	S=1.2	174				
$\pi^+\pi^-\gamma$	(4.22±0.08) %	S=1.1	236				
$e^+e^-\gamma$	$(6.9 \pm 0.4) \times 1$	10 ⁻³ S=1.3	274				
$\mu^+\mu^-\gamma$	$(3.1 \pm 0.4) \times 1$	10-4	253				
e+ e-		10 ⁻⁶ CL=90%	274				
$\mu^+\mu^-$	$(5.8 \pm 0.8) \times 1$	₁₀ -6	253				
2e ⁺ 2e ⁻	(2.40±0.22) × 3		274				
$\pi^{+}\pi^{-}e^{+}e^{-}(\gamma)$	(2.68±0.11) ×		235				
$e^{+}e^{-}\mu^{+}\mu^{-}$		10 ⁻⁴ CL=90%	253				
$2\mu^{+}2\mu^{-}$	< 3.6 ×	10 ⁻⁴ CL=90%	161				
$\mu^{+}\mu^{-}\pi^{+}\pi^{-}$		10 ⁻⁴ CL=90%	113				
$\pi^+ e^- \overline{\nu}_e + \text{c.c.}$	< 1.7 ×	10 ⁻⁴ CL=90%	256				
$\pi^+\pi^-2\gamma$		10-3	236				
$\pi^+\pi^-\pi^0\gamma$		10 ⁻⁴ CL=90%	174				
$\pi^0 \mu^+ \mu^- \gamma$	< 3 ×	10 ⁻⁶ CL=90%	210				

Charge conjugation (C), Parity (P), Charge conjugation \times Parity (CP), or Lepton Family number (LF) violating modes

	(,			
C	< 9			257
P,CP	< 1.3			236
P,CP	< 3.5	× 10 ⁻⁴	CL=90%	238
C	< 5	× 10 ⁻⁴	CL=90%	238
C	< 6			179
C	< 1.6	× 10 ⁻⁵	CL=90%	274
P,CP	< 6.9	× 10 ⁻⁷	CL=90%	40
C	[f] < 4			257
C	[f] < 5		CL=90%	210
LF	< 6	× 10 ⁻⁶	CL=90%	264
	C P,CP P,CP C C C C P,CP C	$\begin{array}{ccccc} C & < & 9 \\ P,CP & < & 1.3 \\ P,CP & < & 3.5 \\ C & < & 5 \\ C & < & 6 \\ C & < & 1.6 \\ P,CP & < & 6.9 \\ C & [f] < & 4 \\ C & [f] < & 5 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

η Samples – Present and future

	Technique	Total η
CB @AGS	πp → ηn	10 ⁷
CB @MAMI-B	γρ → ηρ	2x10 ⁷
CB @MAMI-C	γρ → ηρ	6x10 ⁷
KLOE @DAFNE	$e^+e^- \rightarrow \Phi \rightarrow \eta \gamma$	5x10 ⁷
WASA @COSY	$pp \rightarrow \eta pp pD \rightarrow \eta ^3He$	>10 ⁹ (unt.) 3x10 ⁷ (tagged)
CB @MAMI 10 wk (proposed 2014)	γρ → ηρ	3x10 ⁸
Phenix @RHIC	d Au → ηX	5x10 ⁹
Hades @GSI	$pp \rightarrow \eta pp p Au \rightarrow \eta X$	4.5x10 ⁸
Near future samples:		
GlueX @JLAB (just started)	$\gamma p \rightarrow \eta p \rightarrow neutrals$	4.5x10 ⁷ /year
JEF @JLAB (recently approved)	$\gamma p \rightarrow \eta X \rightarrow neutrals$	3.9x10 ⁵ /day
REDTOP @FNAL (proposing)	p Be → ηX	2.5x10 ¹³ /year

REDTOP – Golden Channel I CP violation from Dalitz plot mirror asymmetry in $\eta \rightarrow \pi^+\pi^-\pi^0$

- J.Bijnens and K.Ghorbani, jhep11200730(2007), arXiv:0709.0230[hep-ph]; S.Gardner and J.Tandean, Phys. Rev. D69:034011, 2004, arXiv:hep-ph/0308228
- It is an Isopin-violating decay
- EM contributions are known to be strongly suppressed
- It can occur via Strong Interactions due to the mass difference m_u - m_d
- Any mirror-asymmetry in the Dalitz plot is an indication of CP and C violation
- Good for testing the Chiral Perturbation Theory
- Current PDG limits consistent with no asymmetry
- Largest data samples: WASA 2014 (1.2x10⁷), KLOE2 2016 (4.7x10⁶)
- REDTOP expected sample: 109 analyzed events.

REDTOP – Golden Channel II

Dark photon searches:

$$\eta \rightarrow \gamma A' \rightarrow \gamma + I^+I^-$$

- Motivations:
 - Possible cosmic ray excesses from dark matter annihilation
 - Structures anomalies in dwarf galaxies (*Pospelov and Ritz, 2008; Arkani-Hamed et al., 2008*)
 - The muon g-2 anomaly.
- Most accredited model has A' mass is the MeV-GeV range, coupling to to SM charged particles with a strength ~10-3-10-4 of that of the photon
- REDTOP could complement the new experiments at JLAB and Frascati with γ and e^- beams.
- REDTOP can also make a clear statement on similar searches (γe+e-) of the proposed 17 MeV super-weak gauge boson (*S.Gardner at al., 2016, arXiv:1608.03591*) [Golden channel IIa].
 - Below WASA sensitivity.

REDTOP – Golden Channel III

Search for light scalar mesons

$$\eta \rightarrow \pi^0 H$$
; $H \rightarrow \mu^+ \mu^- \text{ vs } e^+ e^-$

- Potentially viable DM candidate, Pospelov et al., Phys. Rev. D78, 115012, 2008.
- Existence of this light scalar particle can significantly enhance this BR compared to the SM value (~10-9)
- REDTOP expected sensitivity is better than 10-10
 - Current limits are ~10-5 − 10-6
- Implications for the R_p anomaly. [Golden channel IIIa]
 - Conventional methods (levels of muonic atoms and elastic scattering experiments) find a discrepancy of about 7σ .

10x Be targets

- 0.33 mm thin
- Spaced 10 cm

Optical TPC

- Measures momentum and trajectory of charged tracks
- Cherenkov light is used
- Tested at FNAL by T1059 (Frisch et al.) successful proof of principle in 2015
- First radiator: Aerogel, dual refractive index system
- Low pressure N₂
- ~1 mm x 1.5 m
- ~105 SiPM
- 98% coverage
- Photon polarimeter (optional)

ADRIANO Calorimeter

- PID and energy measurement (res. ~5%/sqrt(E))
- Tested at FNAL by T1015
- Use of Cherenkov light and Scintillation light (dual readout mode)
- Scintillator + heavy glass sandwich
- 20 X₀ (~64 cm deep)
- 96% coverage
- High granularity
- Good time resolution (~100 psec) for high rate DAQ

Muon polarimeter

- From TREK exp.
- Detect e+e- when a muon is stopped in the calorimeter to measure polarization
- Array of plastic scintillators

Solenoid

- ~0.6-0.8 T

- Fiber tracker
 - Vertexing
 - Rejection of gamma conversion
- Trigger
 - Reduces the rate of events recorded to ~2x106 Hz
 - 3 level system
 - L0 (OTPC+ADRIANO-Ch): rejection factor 100
 - L1 (OTPC+ADRIANO for PID and γ -conversion rejection): rejection factor 100
 - L2 (reconstruction with CPUs): rejection factor ~200
- Performances studies in progress

Physics/Detector Issues

- Background
 - Rejection of multi-pion events
 - Mass resolution for di-leptons for bump hunting
 - η-tagging
- ADRIANO → ADRIANO2
 - Add tiles directly coupled to SiPM
- Sensors for O-TPC
 - Need to sustain >10¹¹ n/cm²
 - LAPPD as a possible choice
- Fiber tracker (LHCb style)
 - Radiation damage
- Trigger
 - Need to recognize Cherenkov rings at L1
 - L0/L1 from topological analysis of showers (PFA)
- · Accelerator physics issues
- R&D needed

Trigger & DAQ

- Requirement:
 - $8x10^{12}$ η/yr → event rate ~2x10⁸ Hz
- Trigger task:
 - Reduce this rate to ~100 Hz for events recorded

Level	Algorithm	Detectors	Hardware	Rejection factor
LO	Σ OTPC && ADRIANO-Cher.	OTPC, ADRIANO	Fast sum	100
L1	Lepton pairs ID , γ conv. rejection	OTPC, ADRIANO, Fiber Tracker	FPGA	100
L2	Reconstruction	All	2000 CPU cores	~200

REDTOP Running Phases

(original plan)

- Intermediate phases (during detector R&D, OTPC only)
 - $p^{7}Li \rightarrow 8Be \rightarrow e^{+}e^{-}X$
 - p ${}^{2}H$ → ${}^{3}He$ e+e- (M.Viviani et al.)
 - Confirm 17 MeV bump in Hungary exp. (*J.Feng at al., arXiv:1604.07411; A.Krasznahorkay at al., Phys. Rev. Lett. 116, 042501, 2016*)
 - More possible beams (p/ μ /e)
- Phase I: η factory
- Phase II: η' factory
- Phase III: Dark photons radiating from muons
- Phase IV: Muon Scattering Experiment (optional)
- Phase V: Tagged REDTOP (at PIP-II)
- Phase VI: Rare Kaon Decays: $K^+ \rightarrow \pi^+ \nu \nu$