ForwArd SearcH ExpeRiment at the LHC

Felix Kling (UC Irvine) for the FASER Collaboration

PBC Annual Workshop 2019
January 16th 2019
The Idea

transverse region: high pT
- searches for heavy strongly coupled physics
- typical rates $\sigma \sim \text{fb} - \text{pb}$

 $N_H = 10^7$ at 300fb$^{-1}$

forward region
- **enormous** event rates $\sigma_{\text{inel}} \sim 100\text{mb}$: $N_\pi = 10^{17}$ at 300fb$^{-1}$
- extremely weakly-coupled particles may be produced sufficiently
- most particles have small $p_T \sim \Lambda_{\text{QCD}}$ and high $E \sim \text{TeV}$
- particles highly **collimated** $\theta \sim \Lambda_{\text{QCD}}/E \sim \text{mrad}$
- weakly coupled particles can be **long-lived**

 \rightarrow decays outside downstream from IP

- we propose small ($\sim 1\text{m}^3$) inexpensive ($\sim 1\text{M}$) detector

 $\sim 500\text{m}$ downstream to search for LLP

\rightarrow **FASER:** ForwArd Search ExpeRiment at the LHC
FASER: Forward Search Experiment at the LHC

Felix Kling

Status and Timeline

05/2017 - first idea on blackboard

09/2017 - original FASER paper arXiv:1708.09389

01/2018 - FASER joins PBC

Spring 2018 - FASER collaboration forms
identification of location / FLUKA background study
first detector design

Technical Proposal - 11/2018
location in TI-12 / in-situ measurements
civil engineering, transport, and integration
technical details of FASER detector components

11/2018 - LLP Physics Potential
arXiv:1811.12522

12/2018 - Funding

Detector Construction and Integration - 2019-2020

Collecting Data - 2021-2023

FASER 2 Upgrade - HL-LHC era
FASER’s Location

Cylindrical Decay Volume

<table>
<thead>
<tr>
<th></th>
<th>FASER</th>
<th>FASER 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius</td>
<td>10cm</td>
<td>1m</td>
</tr>
<tr>
<td>Length</td>
<td>1.5m</td>
<td>5m</td>
</tr>
<tr>
<td>Luminosity</td>
<td>150fb⁻¹</td>
<td>3ab⁻¹</td>
</tr>
</tbody>
</table>

Felix Kling

FASER: ForwArd Search ExpeRiment at the LHC
The detector consists of:
- scintillator veto
- 1.5m long decay volume
- 2m long spectrometer
- EM calorimeter
FASER Magnet

- 0.6T permanent dipole magnets
- Halbach array design
 - LOS to passes through the magnet center
 - minimum digging to the floor in TI12
 - minimized needed services (power, cooling etc.)
- to be constructed by the CERN magnet group

Detector Design
FASER Tracker

- 3 tracking stations, each with 3 tracking layers
- double sided silicon micro-strip detectors
- ATLAS SCT spare modules will be used
 - 80µm strip pitch, 40mrad stereo angle
 - many thanks to the ATLAS SCT collaboration!
 - 72 SCT modules for the full tracker
FASER ECAL

- EM energy measuring / triggering / electron/photon identification

- FASER will use spare LHCb outer ECAL modules
 - ~1% energy resolution for 1 TeV electrons
 - Many thanks for LHCb for allowing us to use these!

FASER Scintillators

- vetoing charged particles entering the decay volume / triggering

- to be produced at CERN scintillator lab
FASER Integration in T112
Signaling is striking
- two opposite-sign, high energy (E > 500 GeV) charged particles
- originate from a common vertex in a small, empty decay volume
- point back to the IP through 90 m of rock

Background considerations
- shielding: natural (rock) and LHC infrastructure (concrete, magnets, absorbers)
- only muons/neutrino can transport TeV energies through ~100m rock

FLUKA Study
- CERN STI group performed FLUKA simulation
- most backgrounds associated with muon from collision debris
 → estimated flux: 0.2 Hz/cm\(^2\) for E>100GeV
 → can be vetoed with scintillators
In-Situ Measurements
- using emulsion detectors
- first measurements already performed in TI18 and TI12
- consistent with FLUKA simulations

 \[
 \text{FLUKA: } 2 \cdot 10^4 \text{ fb/cm}^2 \quad \text{Emulsion Detector: } (1.2-1.9) \cdot 10^4 \text{ fb/cm}^2
 \]
- data analysis on-going
FASER’s Physics Potential

LLP Searches at FASER
- FASER has a full physics program: Dark photon, dark Higgs, HNL, ALPs

Dark Photon

\[\epsilon F^{\mu\nu} F'_{\mu\nu} \]

[1708.09389]

Dark Higgs

\[\epsilon |H|^2 \phi^2 \]

[1710.09387]

HNL

\[y L H N \]

[1801.08947]
FASER’s Physics Potential

LLP Searches at FASER
- FASER has a full physics program: Dark photon, dark Higgs, HNL, ALPs
- contribution to PBC study

Benchmark Model

<table>
<thead>
<tr>
<th>Benchmark Model</th>
<th>PBC</th>
<th>FASER</th>
<th>FASER 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dark Photons</td>
<td>BC1</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$B - L$ Gauge Bosons</td>
<td>—</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$L_i - L_j$ Gauge Bosons</td>
<td>—</td>
<td>—</td>
<td>✓</td>
</tr>
<tr>
<td>Dark Higgs Bosons</td>
<td>BC4</td>
<td>—</td>
<td>✓</td>
</tr>
<tr>
<td>Dark Higgs Bosons with hSS</td>
<td>BC5</td>
<td>—</td>
<td>✓</td>
</tr>
<tr>
<td>HNLs with e</td>
<td>BC6</td>
<td>—</td>
<td>✓</td>
</tr>
<tr>
<td>HNLs with μ</td>
<td>BC7</td>
<td>—</td>
<td>✓</td>
</tr>
<tr>
<td>HNLs with τ</td>
<td>BC8</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ALPs with Photon</td>
<td>BC9</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ALPs with Fermion</td>
<td>BC10</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ALPs with Gluon</td>
<td>BC11</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

- **inelastic DM**

- **RPV Susy**

Possible additional physics applications
- large neutrino flux: neutrino measurements
- coverage $\eta > 10$: forward SM physics, eg. Monte Carlo validation

Felix Kling
FASER: ForwArd Search ExpeRiment at the LHC
UCIrvine
The **FASER collaboration**: 27 collaborators, 15 institutions, 8 countries

Akitaka Ariga,\(^{1}\) Tomoko Ariga,\(^{1,2}\) Jamie Boyd,\(^{3}\) Franck Cadoux,\(^{4}\) David W. Casper,\(^{5}\) Yannick Favre,\(^{4}\) Jonathan L. Feng,\(^{5}\) Didier Ferrere,\(^{4}\) Iftah Galon,\(^{6}\) Sergio Gonzalez-Sevilla,\(^{4}\) Shih-Chieh Hsu,\(^{7}\) Giuseppe Iacobucci,\(^{4}\) Enrique Kajomovitz,\(^{8}\) Felix Kling,\(^{5}\) Susanne Kuehn,\(^{3}\) Lorne Levinson,\(^{9}\) Hidetoshi Otono,\(^{2}\) Brian Petersen,\(^{3}\) Osamu Sato,\(^{10}\) Matthias Schott,\(^{11}\) Anna Sfyrla,\(^{4}\) Jordan Smolinsky,\(^{5}\) Aaron M. Soffa,\(^{5}\) Yosuke Takubo,\(^{12}\) Eric Torrence,\(^{13}\) Sebastian Trojanowski,\(^{14,15}\) and Gang Zhang\(^{16}\)
Acknowledgements

The FASER Collaboration gratefully acknowledges the contributions of many people.

We are grateful to the ATLAS SCT project and the LHCb Calorimeter project for letting us use spare modules as part of the FASER experiment. In addition, FASER gratefully acknowledges invaluable assistance from many people, including the CERN Physics Beyond Colliders study group; the LHC Tunnel Region Experiment (TREX) working group; Rhodri Jones, James Storey, Swann Levasseur, Christos Zamantzas, Tom Levens, Enrico Bravin (beam instrumentation); Dominique Missiaen, Pierre Valentin, Tobias Dobers (survey); Jonathan Gall, John Osborne (civil engineering); Caterina Bertone, Serge Pelletier, Frederic Delsaux (transport); Francesco Cerutti, Marta Sabaté-Gilarte, Andrea Tsinganis (FLUKA simulation and background characterization); Pierre Thonet, Attilio Milanese, Davide Tommasini, Luca Bottura (magnets); Burkhard Schmitt, Christian Joram, Raphael Dumps, Sune Jacobsen (scintillators); Dave Robinson, Steve McMahon (ATLAS SCT); Yuri Guz (LHCb calorimeters); Salvatore Danzeca (Radiation Monitoring); Stephane Fartoukh, Jorg Wenninger (LHC optics), Michaela Schumann (LHC vibrations); Marzia Bernardini, Anne-Laure Perrot, Katya Foraz, Thomas Otto, Markus Brugger (LHC access and schedule); Simon Marsh, Marco Andreini, Olga Beltramello (safety); Stephen Wotton, Floris Keizer (SCT QA system and SCT readout); Liam Dougherty (integration); Yannic Body, Olivier Crespo-Lopez (cooling/ventilation); Yann Maurer (power); Marc Collignon, Mohsen Souayah (networking); Gianluca Canale, Jeremy Blanc, Maria Papamichali (readout signals); Bernd Panzer-Steindel (computing infrastructure); and Mike Lamont, Fido Dittus, Andreas Hoecker, Andy Lankford, Ludovico Pontecorvo, Michel Raymond, Christoph Rembser, Stefan Schlenker (useful discussions).
Summary and Outlook

FASER
- search for light weakly coupled particles at LHC
- quick, small and inexpensive experiment

Status
- Letter of Intent and Technical Proposal submitted
- funding from Heising-Simons Foundation and Simons Foundation
- advanced stage of CERN approval

Envisioned Timeline
- build/install FASER in LS2 (2019-20)
- take data during Run 3 (2021-23, 150 fb^{-1})
- upgrade to FASER 2 in LS3 (2023-25) for HL-LHC (2026-35, 3 ab^{-1})

For more information, see
https://twiki.cern.ch/twiki/bin/view/FASER/WebHome

We look forward to feedback and suggestions