

Summary of activities at SUT and SLRI

12th ALICE ITS upgrade, MFT and O2 Asian Workshop November 19, Inha Univ.

THAI INSTITUTES IN INNER TRACKING SYSTEM (ITS) UPGRADE OF ALICE, CERN

- 1. Introduction
- 2. The activities of SUT
- 3. SLRI-BTF
- 4. Wafer characterization
- 5. Ponits of Interest

Background of Project Collaboration

A Large Ion Collider Experiment

- Her Royal Highness Princess Maha Chakri Sirindhorn presided over in MOU signing ceremony between Suranaree University of Technology and ALICE
- At Srapathum palace
- On <u>December 13th</u>, 2012

Collaboration of organizations in Thailand, ALICE and other counties

Research Procedure :

- 1) Find proper material to construct sensor
- 2) Test working and efficiency on prototype sensor
- 3) Simulate situation of advertent particle measurement

Time period : 2013-2020

Manpower : potential to produce 10 PhD. students in project

AICE ITS upgrade Research Activities

SLRI activities

- Synchrotron Light Research Institute Beam Test Facility (Thailand)
- Instruments: Telescope set up
- Result: Study a relation of a number of cluster of DUT with Cluster size on x and y axis (number of pixel) and DUT Detection efficiency (*latest done by Anatachai*)

Table 1 Electron energy parameter at HBT

Synchrotron Light Research Institute Beam Test Facility (Thailand)

Target Manipulator

Instruments: Telescope set up

SLRI-BTF

• Version 1 telescope

Result: (by Anatachai)

Study a relation of a number of cluster of DUT with Cluster size on x and y axis (number of pixel) and DUT Detection efficiency

a number of cluster of DUT with Cluster size on x and y axis (number of pixel)

a number of cluster of DUT with DUT Detection efficiency

Telescope version2

Zaber vertical

Zaber linear

Installed the Zaber linear stages and Zaber vertical stages

SRP preparations

Polish the sample with polishing wheel which contains the diamond polishing compound. Size 1 μ m for coarse grinding Size 0.25 μ m for fine grinding

Mount it with melted wax on the bevel block 1°

Sample has been cut in size 3x1 cm²

SRP measurement

Fig : The probes are stepped along the beveled semiconductor surface.

Fig 8: The SRP measurement station is able to adjust the smallest step of 1 μ m. Each step moves lower inside material 17 nm.

Wafer characterization

A Large Ion Collider Experiment

SRP Result

Fig: Resistivity profiling measured at different depths in the silicon wafer number 015B0A5.

**SRP shows the resistivities above 1 k Ω ·cm from the depth in the range of 0-20 μ m. Then the resistivity reduces sharply between 21-25 μ m.

SEM

Fig : SEM cross section of each area in the silicon wafer.

SEM Result

Picture	Epitaxial thickness(µm)
(а) Тор	25.198
(b) Bottom	25.298
(c) Left	25.298
(d) Right	25.298
(e) Center	25.198

Table : SEM cross section results of five different areasin the silicon wafer.

A Large Ion Collider Experiment

Point of interests.

Further reduction of the material thickness of the Inner Layers in LS3.

<u>Table</u> List of material budget contribution in separated part

parts	% contribution
Silicon sensor, which has a thickness of 50 μ m	15
Electrical substrate (FPC)	50
Cooling circuit	20
Carbon space frame	15

- 1. Increasing the pixel size
 - continue collaborating and contribute to the next generation of silicon detectors, by SUT and TMEC
- 2. Thin and bend the sensor
 - contribute to the sensor characterization and beam test at SUT and SLRI
- 3. Implementation of mechanical structure
- 4. Use air flow to release the heat
 - contribute to the geometry construction and material test for the mechanical structure and cooling of IB3.

