

MFT Readout Electronics and Power Distribution

Massimiliano Marchisone – IPN, Lyon

Overview of half MFT

Readout scheme and off-detector components

- Between 132 and 272 high speed data signals (1.2 Gb/s) per disk.
- Between 96 and 136 clock and slow control signals per disk.
- Total of 1496 Twinax cables for read-out and control organized in FireFly cables.
- 80 Readout Units (concentrator boards) ~6 m away, where TID about <1 krad.
- Optical fibers organized in trunk cables.
- 10 CRU for data + 1 for Power Supply Unit control and 6 FLPs.

New disk PCBs

- PCB prototypes of disks 0/1, 2 and 4 already produced and working well.
- New version of disk 0/1 PCB (disk 0/1) with improved capacitors has been produced and it's currently being validated in French labs (metrology and electrical tests).
- The other PCBs will follow the same strategy.

New disk PCB 0/1

• All capacitors below ladder and power connectors to avoid mechanical interference.

MB012 – first prototype

 $12^{\rm th}$ ALICE ITS upgrade, MFT and O2 Asian Workshop – 20 November 2018

Mother Board 012 – new version

 A new Mother Board must be designed: 4 PCBs connected by 3 independent flex SIGN/GND/SIGN → 3 independent cards (MB0, MB1 and MB2).

• MB0 = MB1, except for the size.

Mother Board for disk 0 and 1

• 3 prototypes of each types now produced: 1 in Nantes for metrology, 1 in Lyon to integrate the test bench and 1 in Saclay for electrical checks.

Mother Board – disk 0

Mother Board – disk 1

Mother Board disk 2

• Layout of MB2 almost completed.

 $12^{\rm th}$ ALICE ITS upgrade, MFT and O2 Asian Workshop – 20 November 2018

Dispatching cards

- RU can accept as input only one ladder per slot \rightarrow some dispatching cards are needed.
- To be hosted in the RU crate.
- 4 cards to be developed: 2 for Disks 0, 1 and 2, 1 for disk 3 and one for disk 4.

Dispatching cards

• First dispatching card finalized at CERN. Working now to develop a front panel.

Cables from cone to RU crates

- Big variety of cables to minimize the volume in the cone.
- 4 types from disks/PSU to patch panel and 4 from patch panel to RU crates.

Cables for RUs

- Other cables must be developed to connect the dispatching cards to the readout unit.
- Correspondence 1:1 ladder-transition board input.
- Samtec asked to modify the cable used by ITS. Prints now finalised.
 - less differential pairs (8 instead of 12);
 - smaller connectors on dispatching cards.

		SIG	NAL	MAP	PING		
J1	TYPE	J2	J3	J1	TYPE	J2	J3
1	GND	2	-	2	GND	1	-
3	DP	4	-	4	DP	3	-
5	DP	6	-	6	DP	5	-
7	GND	8	-	8	GND	7	-
9	DP	10	-	10	DP	9	-
11	DP	12	-	12	DP	11	-
13	GND	14	-	14	GND	13	-
15	DP	16	-	16	DP	15	-
17	DP	18	-	18	DP	17	-
19	GND	20	-	20	GND	19	-
21	DP	22	-	22	DP	21	-
23	DP	24	-	24	DP	23	-
25	GND	26	25	26	GND	25	26
27	DP	-	23	28	DP	-	24
29	DP	-	21	30	DP	-	22
31	GND	-	19	32	GND	-	20
33	DP	-	17	34	DP	-	18
35	DP	-	15	36	DP	-	16
37	GND	-	13	38	GND	-	14
39	DP	-	11	40	DP	-	12
41	DP	-	9	42	DP	-	10
43	GND	-	7	44	GND	-	8
45	DP	-	5	46	DP	-	6
47	DP	-	3	48	DP	-	4
49	GND	-	1	50	GND	-	2
ALL GND COMMON AND TIED TO CABLE							
SHIELD AND CONNECTOR LATCHES (6PLCS)							
12 & 13 PINS NOT LIST ARE NO							

Power Supply Unit: design constraints

- MFT Power Supply Unit features:
 - Four PSU for total MFT
 - One PSU provides power for five half planes
 - Separated Analog and Digital power supply (1,8V)
 - BBIAS negative votlage generation [0 ; -3V]
 - Latch-up detection on each output and each zone
 - Voltages, currents and temperatures monitoring via GBT-SCA
 - BBIAS voltage and latch-up current threshold control via GBT-SCA
 - Radiation tolerant components (up to 75krad)

PSU prototype

 $12^{\text{th}}\,\text{ALICE ITS}$ upgrade, MFT and O2 Asian Workshop – 20 November 2018

PSU prototype

12th ALICE ITS upgrade, MFT and O2 Asian Workshop - 20 November 2018

Power Supply Unit – prototype optimization

- Some optimization implemented and validated with the prototype
 - 1) New operational amplifiers to improve the measure of the currents.
 - 2) MUX system improved with transistor to better deal with high irradiation.
 - 3) Possibility to know which line (AVDD, DVDD or BB) caused a latch-up.
 - 4) System to shut-down analog or digital line in case of DCDC failure of digital or analog line in the same zone \rightarrow tested in simulation.
- Mechanical design of PSU main+mezzanine finalized.
- Schematics ready, working on layout (DCDC and main connectors placed, pinout defined).

12th ALICE ITS upgrade, MFT and O2 Asian Workshop - 20 November 2018

Signal integrity measurements Present setup in Lyon include:

- - half-disk prototype used for test bench (3+3 ladders of 3 chips each)
 - PSU prototype
 - MB0 or 1
 - fake MB2
 - fake dispatching card
 - transition board
 - RUv1.0
- 8 m long SAMTEC custom made cable between fake dispatching card and RU.
- Total of 8 connections ladder. They will be 9 (max) in real life \rightarrow quite realistic test bench.
- Test ongoing with chips in PRBS mode (1.2 Gb).

Backup slides

12th ALICE ITS upgrade, MFT and O2 Asian Workshop – 20 November 2018

MFT readout design requirement

- Functions:
 - transfer data signal to the outside world (RU, CRU...);
 - provide clock and slow control signals to the chip;
 - provide power (analog, digital and back bias) and ground to the chips;
 - transfer supplementary data from sensors (voltages, currents, temperature control).
- Constraints:
 - preserve data signals up to 1.2 Gb/s;
 - very limited space on all on-detector components;
 - data from sensors should be integrated in the data flow.

Disk4

12th ALICE ITS upgrade, MFT and O2 Asian Workshop - 20 November 2018

Mother Board 012

• 2x3 layers in the flex: **SIG/GND/SIG + SIG/GND/SIG**.

- Stack-up discussed with Techci in order minimize the rigidity of the flex.
- 100 Ω of equivalent impedance between P and N, 50 Ω between the GND are the only constraints.

- Proposed stack-up (dielectric not considered).
- ¹/₂ of the old Mother Board stack-up.

Flex rigidity

- Flex part of the Mother Board turned out to be too rigid, despite all the optimizations.
- Signals and ground layers (Cu) are the reason of such a rigidity.

- To route all the signals and to guarantee a good electrical quality it is necessary to keep three layers of copper per disk.
- Solution \rightarrow change the Mother Board design decoupling the three disks without changing their position in the cone (see next slides). 12th ALICE ITS upgrade, MFT and O2 Asian Workshop – 20 November 2018

Design of MB0 and MB1

12th ALICE ITS upgrade, MFT and O2 Asian Workshop - 20 November 2018

Design of MB2

12th ALICE ITS upgrade, MFT and O2 Asian Workshop - 20 November 2018

New

PSU to ladder block diagram

PSU to disk block diagram

1 DC/DC converter per zone for digital voltage in disk 3 and 4

12th ALICE ITS upgrade, MFT and O2 Asian Workshop - 20 November 2018

Power Supply Unit: demultiplexer solution

- 1 GBT-SCA per disk: 4 zones x 4 voltage levels = 16 voltage levels.
- GBT-SCA only 4 outputs \rightarrow demultiplexer as proposed solution.

• Automatic passive fail safe protection is add on the GPIO output of the GBT-SCA and the demultiplexer output. If more than one period of multiplexing doesn't occurs, all voltage outputs are shuted down.

12th ALICE ITS upgrade, MFT and O2 Asian Workshop - 20 November 2018

Power Supply Unit: fail safe principle

 $12^{\rm th}$ ALICE ITS upgrade, MFT and O2 Asian Workshop – 20 November 2018

Power Supply Unit: first prototype

12th ALICE ITS upgrade, MFT and O2 Asian Workshop - 20 November 2018

PSU actual layout design

PSU main board (24 DC-DC converters, L-up detection, BBIAS...)

PSU mezzanine board (5 GBT-SCA, 5 DC-DC converters...)

We verified that all the components can fit onto the PSU main and mezzanine board.

PSU layout

- The main board dissipates 16W of power and needs a water cooling for the DCDC converters
- The mezzanine board dissipates 700mW and do not need a water cooling

MUX and DEMUX signal output

PSU reaction after a latch-up

PSU reaction after a latch-up

PSU reaction after a short loss of communication

• Endurance test carried out over six days. No anomaly, no communication loss.

PSU operating power up sequences

PSU operating power up sequences (after latch-up)

Readout cable issues

- Melting of the custom made dielectric while soldering the cable to the PCB, as it has lower melting point respect the standard one:
 - 1) may short the central conductor with the shielding,
 - 2) even if no short happens, the change in geometry affects the z_0 of the cable.

- Solutions tried (and working): use of Bismuth soldering, pre-forming the cable end, use of newly-developed low-pressure tool to partially relief the mechanical strain.
- SAMTEC has to implement all those solutions in an automatic production process \rightarrow delivery delayed. First sample foreseen for end of November.

Readout Unit overview

Readout Unit Firmware blocks

