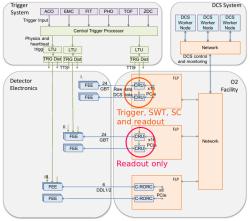
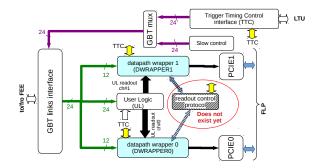
Update on the readout control protocol the detector readout control in ALICE semi detailed

Presentation of the readout protocol from the CRU point of view


November 14th, 2018

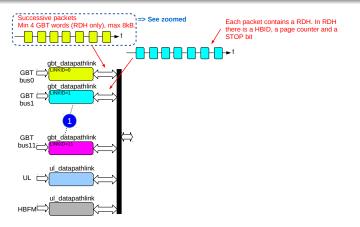
CRU in the system


The detector readout note was written in Feb 2017

- Concept is there, but not the implementation details
- CRU involved in 2 cases, and for both cases I and II CRU manages the trigger and message flow

CRU simplified block diagram

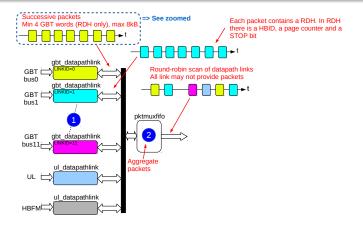
Interfaces


- with FEE through GBT (wide or standard)
- with Central Trigger Processor (CTP) through the Local Trigger Unit (LTU)
- with Detector Control System (DCS) and DAQ through PCie

 \Rightarrow Talk will focus on DWRAPPERs and readout control protocol

CRU data path wrapper block diagram

(collect data from all sources, flow-control and toward FLP)



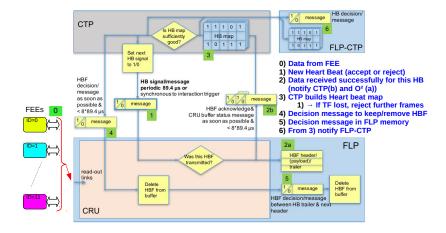
Packets from multiple sources (ID) in parallel (GBT, user logic, ...)

CRU data path wrapper block diagram

(collect data from all sources, flow-control and toward FLP)

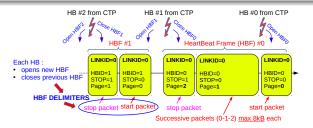
- Packets from multiple sources (ID) in parallel (GBT, user logic, ...)

CRU data path wrapper block diagram


(collect data from all sources, flow-control and toward FLP)

- Packets from multiple sources (ID) in parallel (GBT, user logic, ...)
- **2** Aggregation in pktmuxfifo \rightarrow packets are interleaved
- **③** Check all accepted packets as they pass-by \Rightarrow SCRUTINIZER

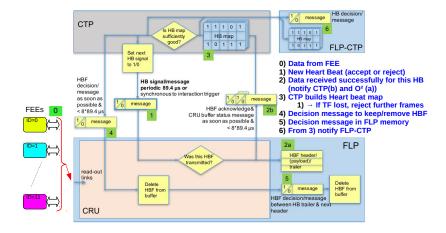
Signal and message flow (reminder)


Practical implementation (step 0)

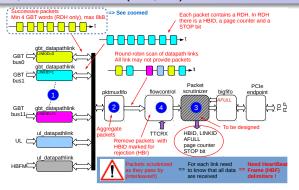
The need of a new protocol for FE with packet mode and user logic (UL)

To be able to scrutinize the interleaved packets as they fly-by, we need delimiters to assess full and complete Heartbeats Frame transmission.

For all Heartbeats Frame (HBF) a min. of 2 packets should be emitted

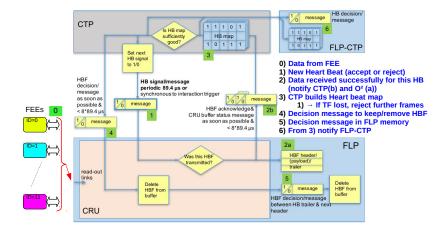

- \bullet Start packet: 1^{st} packet of a HBF \rightarrow page #0
- Stop packet: last packet of a HBF \rightarrow page #n and STOP at 1 (may contain some status, TBD)
- Both packets can be RDH only!

For continuous readout detectors, this will be taken care of by CRU



Signal and message flow (reminder)

Practical implementation (step 1)



The periodically received CTP message is used for two things

- For applicable detectors, trigger messages are forwarded to FE via GBT (not shown here)
- At flowcontrol stage, collected packets are dropped if the HBF is supposed to be rejected (HBa/HBr, i.e. throttling ⇒ this corresponds to a deletion before even going in memory

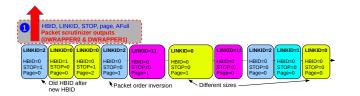
Signal and message flow (reminder)

Practical implementation (step 2 - overview)

HBF messages for TTC (HBam) and FLP

A single instance produces HBF messages for PCIe DMA and for TTC

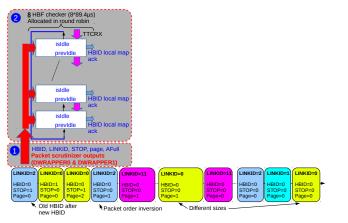
- Flying-by packets scrutinized by DWRAPPER 0/1 \Rightarrow information are checked by multi_HBF_checker
- It produces messages 2a (for FLP) and 2b (for CTP)
 - HBam defined in trigger notes for developers
 - BFM packets are inserted in the data flow like user logic

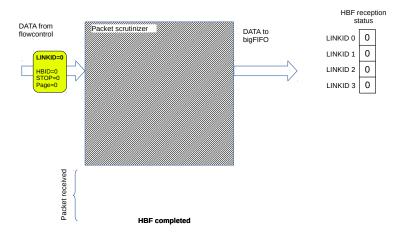


Practical implementation (step 2 - how it is done)

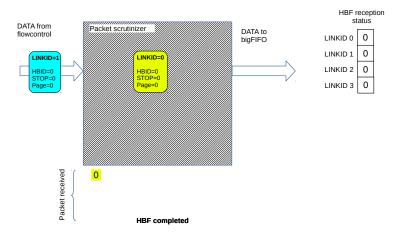
How the CRU local HB map is constructed

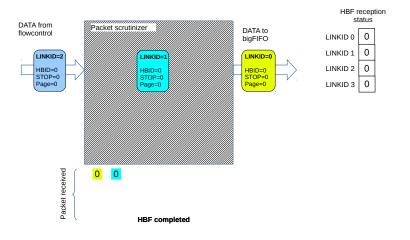
For each flying packet (HBID, LINKID, ...) are produced

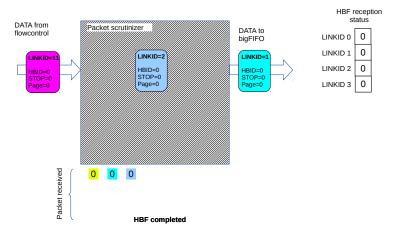


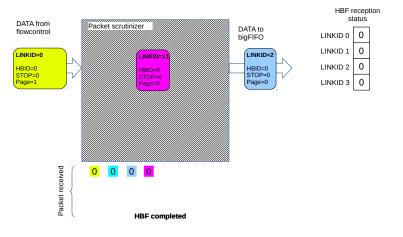

Practical implementation (step 2 - how it is done)

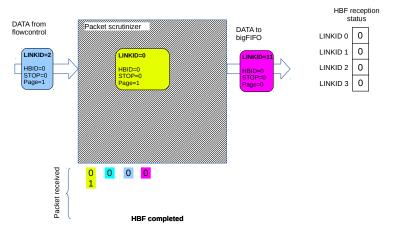
How the CRU local HB map is constructed

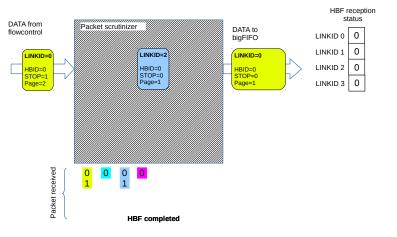

- Sor each flying packet (HBID, LINKID, ...) are produced
- Sor each new HB allocate a free "HBF checker" (8 or more)
 - Each starts a timer and checks full HB data reception for each link
 - Successful HB frame reception if start and stop were received and if all packets of the links were consecutive (animation to follow)

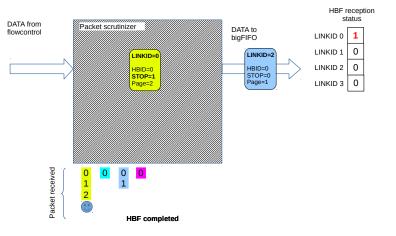


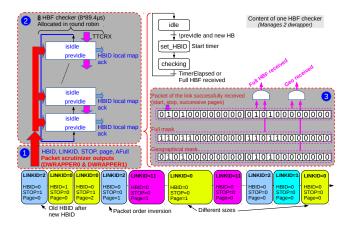




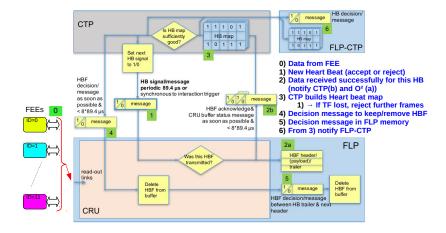








Practical implementation (step 2 - how it is done)


How the CRU local HB map is constructed

Several local masks can be used to assess the successful reception

Signal and message flow (reminder)

Practical implementation (step 3)

HB map construction

This step is ensured by CTP

- To be designed later on when requirements are refined
- In the short term, the loop $2b \to 4$ will be tested with CTP team by just replicating data emitted by CRU (will validate the communication protocol)

Summary, open questions and plan

- A solution exists for implementing the flow control protocol
- New HeartBeat Frame (HBF) must be introduced (step #0)
- Definition of HeartBeat Accept Message (HBam) and HeartBeat Decision Message (HBdm) were introduced by CTP and will be implemented
- Detectors must implement the communication protocol described
 This is for FEE with packet type AND for user logic
- Is geographical decision in CRU necessary ?
 - \Rightarrow If yes, please limit the number: 2? (impact on 2b message)
- Is a status word useful ?
 - \Rightarrow Could be used as payload in the stop packet, used by whom (CTP, O^2 , both?)
- Validate the new communication protocol with FEE (step #0)
- **2** Validate the CRU \rightarrow CTP \rightarrow CRU communication loop (steps 2b, 4, 5)
- ALICE

Validate the flow control with CTP