

Data Acquisition Modeling of PCI Card in O2 Front-end Electronics Using Queuing Theory for Performance Analysis and Improvement

Outline

Motivation and Problem
Objective
What is Queuing Theory
Queue type
Output graph

Motivation and Problem

- PCI card is used for data acquisition from the detector to FLP
- If the data arrives at the PCI card faster than the PCI processing, the buffer in PCI can be full and the data will be lost
- We would like to study the data flow in the acquisition process of the PCI card and performance analysis by using queuing theory and simulations
- We also optimize the design of PCI based on the study

Objective

- Analyze the performance of the data flow between a detector and an FLP computer node through a PCI card by using Queuing theory
- Optimize the minimum buffer size to satisfy a loss probability requirement
- Evaluation by Simulation

What is Queuing Theory

- Queueing theory is the mathematical study of waiting lines, or queues.
- A queueing model is constructed so that queue lengths and waiting time can be predicted.
- Four primary parameter
 - Arrival rate
 - Service rate
 - Queue length
 - Number of server

Gi/G/1/k Model: Discrete Time Markov Chains

DTMC: Discrete Time Markov Chain

-B = T		B	С						
$\bullet C = \beta \otimes (T^0 \alpha)$	$P_x =$	Ε	A_1	A_0					
$-E = S^0 \otimes T$			<i>A</i> ₂	A_1 A_2	A_0 A_1	A_0			
$-A^0 = S \otimes (T^0 \alpha)$					÷.,	÷.,	۰.		
$-A^2 = (S^0\beta) \otimes T$						A_2	A_1	A_0	
$-A^{1} = S \otimes T + (S^{0}\beta) \otimes (T^{0}\alpha)$		_					A_2	$A_1 + A_0$	

Loss probability

• Let z_n be probability that are n customer in the system

$$\mathbf{z}_0 = \lambda^{-1} [\mathbf{x}_0(\mathbf{T}^0 \boldsymbol{\alpha}) + \mathbf{x}_1(\mathbf{S}^0 \otimes (\mathbf{T}^0 \boldsymbol{\alpha}))],$$

$$\mathbf{z}_i = \lambda^{-1} [\mathbf{x}_i(S \otimes (\mathbf{T}^0 \boldsymbol{\alpha})) + \mathbf{x}_{i+1}(\mathbf{S}^0 \boldsymbol{\beta}) \otimes (\mathbf{T}^0 \boldsymbol{\alpha})], \quad 1 \leq i < K,$$

$$\mathbf{z}_K = \lambda^{-1} [\mathbf{x}_K(S \otimes (\mathbf{T}^0 \boldsymbol{\alpha}))].$$

• Let p_l be the loss probability

$$p_l = \mathbf{z}_K \mathbf{1} = \lambda^{-1} \mathbf{x}_K (S \otimes (\mathbf{T}^0 \boldsymbol{\alpha})) \mathbf{1}.$$

Framework

PCI design Card

Input parameter

- Arrival Rate
- Service Rate
- Queue Length

Output parameter

- Loss probability
- Graph performance

Queue Behavior

- Gi/G/1/k model
- No prioritized queue
- FIFO scheduling

Graph

