

12th ALICE ITS Upgrade, MFT, and O2 Asian Workshop November 19 to 21 2018, Incheon, South Korea

Status of the MFT software in the ALICE O2 framework

(on behalf of MFT WP9)

Instituto de Física / UFRGS Porto Alegre – Brazil

Summary

- Brief introduction to MFT
 - Comparison: ITS & MFT
 - Readout electronics
- MFT Geometry
- Data reconstruction

- Standalone track (MFT) + muon tracks (MCH) = global tracks
- MFT + MCH matching to enable physics
 - global track with Pt and vertex information

Standalone tracking using cellular automaton algorithm

tracking chambers

ALICE Collaboration, Technical Design Report for the Muon Forward Tracker http://cds.cern.ch/record/1981898

Comparison: ITS & MFT

- Differences:
 - Readout electronics
 - Number of chips and its positioning symmetry
 - More difficult to sort clusters for track matching
 - ChipMapping
 - Geometry.xml

- Similarities:
 - Same ALPIDE Chip
 - Data reconstruction up to clusterization commont to ITS/MFT
 - Raw data and Data processing layer imported from ITS

Readout zones

• 8 zones per disk. One RU per zone.

Massimiliano Marchisone (Universite Claude Bernard Lyon I (FR))

ALICE

MF 7

https://indico.cern.ch/event/671531/contributions/2746817/attachments/1535804/2405852/05Oct2017_MFT-WP9.pdf

UFRGS

MFT Geometry

- MFT Acceptance
 - Heat Exchanger, Flex, Sensors, electronic components
- TPC Acceptance
 - Barrel & services
- Passive elements: out of acceptance
 - Supports, structure, PSU
- Integration
- Alignment & Calibration

MFT Geometry

MFT Acceptance

- Sensors
- Flex circuits (FPC) & connectors
- Heat ExchangerS
- Relevant volumes within MFT acceptance are implemented with fine details

FPC details Satoshi Yano (IRFU, CEA)

ALICE

MF

https://indico.cern.ch/event/749678/contributions/3101718/attachments/1699373/2736223/0809_syano_Wr _.pdf

Light version for status display

- Simplified volumes for sensors' active volume
- One box per sensor
- 936 boxes

MFT Segmentation

Rafael Pezzi (UFRGS) & Javier Castillho Castellanos (IRFU)

Detectors/ITSMFT/MFT/data/Geometry.xml

```
Geometry.xml
    <?xml version="1.0"?>
 1
    <MFT>
 2
      <half top="0" ndisk="5" xpos="0" ypos="0" zpos="-46.">
 3
        <disk idisk="0" nladder="24" xpos="0." ypos="0." zpos="0."</pre>
                                                                        phi="0" theta="0" psi="0">
 4
 5
            <ladder iladder="0" nsensor="2" xpos="-7.945" ypos="-0.16" zpos="0.7165" phi="0" theta="180" psi="90">
                <chip ichip="0" xpos="0.04" ypos="0.105"
                                                            zpos="0.0165" phi="0" theta="0" psi="0"/>
 6
                                                            zpos="0.0165" phi="0" theta="0" psi="0"/>
                <chip ichip="1" xpos="3.055" ypos="0.105"
 7
 8
              </ladder>
            <ladder iladder="1" nsensor="3"
                                              xpos="-6.245" ypos="-0.16" zpos="0.7165" phi="0" theta="180" psi="90">
 9
                                                             zpos="0.0165" phi="0" theta="0" psi="0"/>
10
                <chip ichip="0" xpos="0.04"
                                              ypos="0.105"
11
                <chip ichip="1" xpos="3.055"
                                              ypos="0.105"
                                                             zpos="0.0165" phi="0" theta="0" psi="0"/>
                                                             zpos="0.0165" phi="0" theta="0" psi="0"/>
12
                <chip ichip="2" xpos="6.07"
                                              ypos="0.105"
13
              </ladder>
            <ladder iladder="2" nsensor="3" xpos="-4.545"
14
                                                            ypos="-0.16" zpos="0.7165" phi="0" theta="180" psi="90">
15
                <chip ichip="0" xpos="0.04" ypos="0.105"
                                                            zpos="0.0165" phi="0" theta="0" psi="0"/>
                <chip ichip="1" xpos="3.055" ypos="0.105"
                                                            zpos="0.0165" phi="0" theta="0" psi="0"/>
16
                <chip ichip="2" xpos="6.07" ypos="0.105"
                                                            zpos="0.0165" phi="0" theta="0" psi="0"/>
17
              </ladder>
18
```


Heat Exchanger Franck Manso (LPC)

MFT Geometry

TPC Acceptance

Barrel Services Rodrigo A. Helaconde

MFT Geometry

Out of acceptance elements

- PCB + Supports
- Services. Manyfold
- Power Supply Unit

Supports and PCBs

ALICE

- Detailed MFT Geometry description in progress
 - suitable only for detailed simulations: secondary particles production, back scattering, material budget close to reality
 - A simpler geometry suitable for high performance reconstruction needs to be implemented
- Design of some parts have changed since implemented in O2. Needs revision.

Reconstruction (Bogdan Vulpescu)

- Cluster combinations for the track finder
 - Optimization strategy
- Integration of data flow devices into the Data Processing Layer: up to now we have the common ITS/MFT digitizer

• DPL Training planned for early 2019.

Simulation

How to find tracks?

Standalone tracking using cellular automaton algorithm

How to optimize standalone tracking?

Group and sort clusters in R-Phi (x-y plane)

The R-Phi histogram

- 50 x 50 bins in the range:
 - 2 cm < R < 16 cm
 - $-0 < \phi < 2\pi$

(contains all clusters in all layers)

- Each cluster has attached two indices $\mathfrak{I}_{\mathsf{R}}$ and \mathfrak{I}_{φ} and a combined index:
- $\mathfrak{I} = \mathfrak{I} \varphi \cdot \operatorname{Nbins}(\mathsf{R}) + \mathfrak{I}_{\mathsf{R}}$
- The clusters are sorted according to the combined index (increasing order) in each of the 10 layers

IFRGS

How many R-Phi bins should be scanned in order to take into account the multiple diffusion from one layer to the next?

1) consider a track which produces clusters in layers "i" and "i+1"

2) from the cluster in layer "i" follow a linear propagation to the layer "i+1" and find the R-Phi bin corresponding to the impact point

3) from the cluster in layer "i+1" find the corresponding R-Phi bin

4) build histograms of the bin difference in R and Phi

5) must include several effects:

- low energy
- magnetic field
- z-vertex distribution

ALICE

Diffusion on R & ϕ

Histogram of R-Phi bin difference

ALICE

Cluster matching optimization

Note: within one R-Phi bin the (sorted) clusters are identified by the min/max index range from the cluster list of the full layer;

this is stored as a

look-up-table for each layer

the yellow range corresponds to the 3x3 bins in layer "i+1":

```
\mathfrak{I}_{R} - 1, \mathfrak{I}_{R}, \mathfrak{I}_{R} + 1
```

$$\mathfrak{I}_{\varphi}$$
 - 1, \mathfrak{I}_{φ} , \mathfrak{I}_{φ} + 1

In another version we explore fields of 5x5 bins in layer "i+1".

Not final: room for ontimization on the shane and size of lookun window

Testing the time spent in the cluster loops

UFRGS

MFT Data Processing Layer

Digits \rightarrow Clusters \rightarrow Tracks

- MFT Digitizer implemented in Data Processing Layer
- Adapted from ITS digitizer (Sandro Wenzel)

> digitizer-workflow -b --mft-digit-outfile

DPL Training planned for early 2019.

<name>.root --simFile <name>.root mftdigits.root

o2sim.root

12th ALICE ITS Upgrade, MFT, and O2 Asian Workshop

November 19 to 21 2018, Incheon, South Korea

Thanks

Rafael P. Pezzi

Instituto de Física / UFRGS Porto Alegre – Brazil

on behalf of MFT WP9 Antonio Uras, Bogdan Vulpescu, Carlos Soncco, Franck Manso, Javier Castillho Castellanos, Rafael Pezzi, Rodrigo A. Helaconde, Satoshi Yano

