# Some considerations on the future

Y. Kwon (Yonsei) in discussion with L. Musa (CERN)

## Active target

- Initiation by L. Musa
  - Beam split option (LHC)
  - Event & their reconstruction inside the active target
  - Like digital emulsion chamber (based on the fine spatial resolution)

## Fixed Target @ LHC

 $7 TeV p \rightarrow y_{beam} = 9.6$ 

 $2.5 TeV/u \rightarrow y_{beam} = 8.6 (35A \text{ GeV} + 35A \text{ GeV})$ 

RHIC-like condition with large forward acceptance, pixel detector with extremely fine granule!



## Trial version



## Geometric acceptance

- Some dependence on the initial distribution, but large acceptance  $\geq$  80%.
- Open issue: Cooperation with barrel in the collider mode towards very fine backward measurement and full kinematic coverage.
  - Missing forward & backward measurement at RHIC. "CGC"
  - Large rapidity correlation such as beam-target pair related.
  - Diffraction physics.

## Acceptance analysis for $\pi^{\pm}$



12th ALICE ITS upgrade, MFT and O2 Asian Workshop

### Acceptance analysis for $\mu^-$



12th ALICE ITS upgrade, MFT and O2 Asian Workshop

## Single particle resolution

- Assumed pixel sensor
  - Fully depleted model, 20 ( $\mu$ ) x 20 ( $\mu$ ) pixel
  - 50 (µ) thick
  - Additional 50 ( $\mu$ ) thick Aluminum backplane
  - Arbitrary spacing between sensor layers, 5 (mm)

 $\frac{\delta p}{p} \sim 0.4\% \& p\delta\theta \sim 10^{-3} (GeV)$  at low momentum and slow increase with p.

Prong vertex: vertex with multi-charged particles

```
Lateral position resolution \sim 3(\mu)
Longitudinal position resolution \sim 1(mm)
```

#### Momentum Resolution ( $\delta p/p$ )



Using simulated Pythia events (MSEL=5)

#### Angle Resolution $(p \cdot \delta \theta)$



Using simulated Pythia events (MSEL=5)

## Vertex Resolution

• B decay vertex (@ MSEL5 Single p-p Events, Total 100 Events each)



Heavy flavor measurement

## Main decay modes that counts charged particles from $\Xi_{cc}^{++}$



We excluded neutral particles with strangeness from counting

12th ALICE ITS upgrade, MFT and O2 Asian Workshop

## $\Xi_c^+$ and $\Lambda_c^+$ make multi-prong vertex

The number of charged particles Nc distribution



We excluded neutral particles with strangeness from counting 12th ALICE ITS upgrade, MFT and O2 Asian Workshop

## Near future plan

- Connected prong vertexes with charge carrying baryons
- Prong vertexes with associated single hard lepton

e(µ) pair mass resolution

#### Simple formula for lepton pair mass

Assume  $m_e \ll m_{ee}, p_1, p_2$  and taking electron 1 direction as z,

$$p_{1}^{\mu} = (p_{1} \quad 0 \quad 0 \quad p_{1})$$

$$p_{2}^{\mu} = (p_{2} \quad p_{2} \sin \theta \quad 0 \quad p_{2} \cos \theta)$$

$$m_{ee}^{2} = (p_{1} + p_{2})^{\mu} (p_{1} + p_{2})_{\mu} = 2p_{1}^{\mu} \cdot p_{2\mu} = 2p_{1}p_{2}(1 - \cos \theta) = 4p_{1}p_{2}sin^{2}\frac{\theta}{2}$$

$$\frac{\delta m_{ee}}{m_{ee}} = \frac{1}{2} \left( \frac{\delta p_{1}}{p_{1}} \bigoplus \frac{\delta p_{2}}{p_{2}} \bigoplus \cot \frac{\theta}{2} \cdot \delta \theta \right)$$

$$m_{ee} = 2\sqrt{p_{1}p_{2}} \sin \frac{\theta}{2} = 2p_{GM} \sin \frac{\theta}{2} \approx p_{GM} \theta \quad \text{at zero mass limit}$$

## Possible limitation for mass resolution at zero limit

• The 1<sup>st</sup> look at angular resolution

 $p\delta\theta \sim 10^{-3} (GeV)$ 

- Kalman filter suppresses multiple scattering, but momentum dependence of angular resolution suggests multiple scattering is still the dominant contributor. If better resolution is needed,
  - 1. smaller pixel size will be effective linearly,
  - 2. and less material per unit distance will help if possible (!).

## Particle physics for the charmed and bottomed

Our strength

Acquired experience for large volume pixel detector.

Still away from industrial scale, but closest to the scale (new dimension in experience)

#### $\Xi_c^+$ Lifetime from Pythia vs PDG – reconstructed prong vertex?



#### $\Xi_c^+$ MEAN LIFE

| VALUE                                                                     | E (10 <sup>-15</sup> s | s) EVTS         | DOCUMENT ID          |           | TECN         | COMMENT                                                                                        |
|---------------------------------------------------------------------------|------------------------|-----------------|----------------------|-----------|--------------|------------------------------------------------------------------------------------------------|
| 442±                                                                      | : 26 OU                | R AVERAGE       | Error includes scale | factor    | of 1.3.      | See the ideogram below.                                                                        |
| 503±<br>439±                                                              | $47\pm1$<br>$22\pm$    | .8 250<br>9 532 | MAHMOOD<br>LINK      | 02<br>01D | CLE2<br>FOCS | $e^+e^- \approx \Upsilon(4S)$<br>$\gamma$ nucleus, $\overline{E}_{-1} \approx 180 \text{ GeV}$ |
| 340_                                                                      | ${}^{70}_{50}\pm 2$    | 20 56           | FRABETTI             | 98        | E687         | $\gamma$ Be, $\overline{E}_{\gamma} = 220$ GeV                                                 |
| 400_                                                                      | $180 \pm 10$           | 00 102          | COTEUS               | 87        | SPEC         | $nA \simeq 600 \text{ GeV}$                                                                    |
| 480+                                                                      | 210 + 20<br>150 - 10   | 00 53           | BIAGI                | 85C       | SPEC         | $\Sigma^-$ Be 135 GeV                                                                          |
| ● ● We do not use the following data for averages, fits, limits, etc. ● ● |                        |                 |                      |           |              |                                                                                                |
| 410_                                                                      | $^{110}_{80}\pm$ 2     | 20 30           | FRABETTI             | 93B       | E687         | See FRABETTI 98                                                                                |
| 200+                                                                      | 110                    | 6               | BARLAG               | 89C       | ACCM         | $\pi^-$ (K $^-$ ) Cu 230 GeV                                                                   |

Pythia :  $3.50 \times 10^{-13}s (0.105mm/c)$ PDG :  $4.42 \times 10^{-13}s$ 

### Decay modes

- Particle ID?
- Some constraints for Leptonic modes?