Photon analysis status

Alessio

LHCf collaboration meeting

Firenze, 26-27/11/2018

Photon analysis topics

p-p at 13 TeV

- energy spectrum Completed
- η-extension of analysis Preliminary
- ► dE/dη Preliminary
- Feynman scaling Preliminary
- $ightharpoonup P_T vs \eta To do (?)$

p-Pb at 8.16 TeV

- energy spectrum Preliminary
- ightharpoonup η-extension, dE/dη, scaling, P_T To do (?)

Results in p-p at 13 TeV

- EPOS-LHC: good agreement for E < 3-4 TeV in both pseudorapidity regions
- QGSJET II-04: good overall agreement for high-η, softer spectrum in low-η

Pseudorapidity extension

- Regions added:
 - 0) $\eta > 10.94$
 - **1) 10.25 < η < 10.94** (Arm2 only)
 - **2)** 9.84 < η < 10.25 (Arm2 only)
 - 3) 8.99 < η < 9.22
 - 4) 8.81 < η < 8.99
 - 5) 8.66 < η < 8.81
 - **6) 8.52** < η < **8.66** (Arm1 only)

Feynman scaling area (blue dashed):
 η > 11.56, same P_T coverage as 7 TeV analysis

Electromagnetic energy flow (dE/dη)

EM energy flow: Arm1 vs Arm2

η range	dE/dη (Arm1)	dE/dη (Arm2)
η > 10.94	4.1 (+0.3 -0.3) GeV	3.8 (+0.3 -0.3) GeV
8.99 < η < 9.22	220 (+14 -13) GeV	215 (+16 -16) GeV
8.81 < η < 8.99	253 (+14 -14) GeV	248 (+18 - 18) GeV
8.66 < η < 8.81	270 (+13 -13) GeV	267 (+17 - 17) GeV

- Correlated errors are removed (unfolding and luminosity)
- Arm1 and Arm2 results are consistent within uncertainties

Feynman scaling

- Errors are statistical+systematic
- Luminosity uncertainty is included (1.9% at 13 TeV, 6.1% at 7 TeV, 21% at 900 GeV)
- Good agreement within errors above X_F~0.1

To do list

- p-p at 13 TeV
 - η-extension of analysis
 - ▶ dE/dη
 - Feynman scaling

- Better estimate systematic errors
- Combine Arm1 and Arm2

Photon spectrum in p-Pb at 8.16 TeV

p-Pb analysis

- Same analysis procedure of p-p paper
- MC simulations:
 - CRMC: 10⁷ events with DPMJET 3.06, EPOS-LHC and QGSJET II-04 → for final comparison with data
 - CRMC+DoubleArm+End2End: 10⁷ events with EPOS-LHC (no beam-pipe interaction, DPMJET 3.04 for the interaction with the detector) → for template fit and unfolding
 - UPC simulations (software from Mitsuka-san): 10⁷
 events with STARLIGHT+SOPHIA/DPMJET → add
 UPC contribution to MC
- Integrated luminosity: 8.145 μb⁻¹ +-6.2%
 - calculated on runs 61874-61991 of fill 5538 (~2h)

UPC contribution

Photon spectrum in p-Pb at 8.16 TeV

- $\eta > 10.94$: lower yield from all models
- $8.81 < \eta < 8.99$: all models predict an harder spectrum

To do list

- Increase MC statistics for template fit and unfolding
- Include UPC contribution in MC template and unfolding sample (now it is included only in generators)
- Check discrepancy of hadron L90% distribution between data and MC (broader distribution in MC)
- Include UPC model dependence in sys. uncertainty

backup

LHCf p-p run at 13 TeV

 Low luminosity dedicated run for LHCf: 9th – 13th of June 2015

LHCf run:

- Vs = 13 TeV
- ~ 27 hours of operation
- Luminosity: 0.3 1.6 · 10²⁹ cm⁻² s⁻¹
- ► Pile-up: 0.01 0.03
- 4 · 10⁷ events
 5 · 10⁵ π⁰s
- Trigger exchange with ATLAS

Analysis data set:

- ~ 3 hours of operation
- ► Luminosity: 0.3 - 0.5 · 10²⁹ cm⁻² s⁻¹
- ► Pile-up: 0.007-0.012
- ► Integrated luminosity: 0.194 nb⁻¹
- ► 4 · 10⁶ events

Photons spectrum in p-p at 7 TeV

PLB 703 (2011), 128-134¹⁷

Photons spectrum in p-p at 900 GeV

PLB 715 (2012), 298-303¹⁸

Acceptance extension

- Acceptance region extended to study the η dependence of energy flow
- Low energy region of the spectrum gives the dominant contribution for $8.52 < \eta < 9.22$

Data vs models: η dependence

EM energy flow: systematic error

Systematic errors contribution

Pseudorapidity regions:

- 0) $\eta > 10.94$
- 1) $10.25 < \eta < 10.94$
- 2) $9.84 < \eta < 10.25$
- 3) $8.99 < \eta < 9.22$
- 4) $8.81 < \eta < 8.99$
- 5) $8.66 < \eta < 8.81$

 Energy scale and unfolding give the dominant contribution to the systematic error

EM energy flow: energy cut correction

η range	Correction (error)
η > 10.94	0.983 (+0.006 -0.006)
10.25 < η < 10.94	0.981 (+0.006 -0.006)
9.84 < η < 10.25	0.978 (+0.007 -0.007)
8.99 < η < 9.22	0.956 (+0.018 -0.017)
8.81 < η < 8.99	0.945 (+0.023 -0.021)
8.66 < η < 8.81	0.932 (+0.028 -0.026)

 Systematic uncertainty between predictions of models: 0.6%-3%

22

EM energy flow: energy cut correction

- A correction must be applied for the photon energy cut (e > 200 GeV)
- Correction = flux(all photons) / flux(photons with E > 200 GeV)
- Correction is estimated with CRMC simulations for each model in every $\boldsymbol{\eta}$ region
- Mean and maximum deviation between all models are used as the correction and its error

dE/dη: bias in spectrum integration?

- MC flow reconstructed with the method used for data (=integration of spectrum) vs true energy flow
- Normalised to true flow for each model (only SIBYLL statistical error is shown)
- ~0.1% bias → negligible

Energy flow: results at $\sqrt{s} = 0.9$, 7 TeV

Feynman scaling: 900 GeV spectrum

- to cover the same X_F-P_T phase space of 7 TeV analysis (r < 5 mm), the region with r < 38.9 mm must be considered
- obviously, it cannot be covered by detectors → extrapolation needed
- assuming a limited η-dependence (ref. Taki's thesis), ST spectrum is extrapolated in r < 16.6 mm region while LT spectrum is extrapolated in 16.6 mm < r < 38.9 mm region, then the two spectra are added
- final spectra in 900 GeV paper are normalised to the solid angle covered ($d\sigma/dE/d\Omega$ [mb/GeV/sr])
- the extrapolation is done multiplying the spectrum by the solid angle covered by each region
- difference with Taki's method: I scaled combined spectra while he directly scaled only Arm1 data (not normalised to $d\Omega$)

LHCf p-Pb run at 8.16 TeV

 Low luminosity dedicated run for LHCf: 25th of November 2016 (~9 hours)

Analysis data set:

- ►~ 2 hours of operation
- **Luminosity:**
 - $\sim 0.8 \cdot 10^{28} \text{ cm}^{-2} \text{ s}^{-1}$
- ► Pile-up: 0.01
- ▶ 3 · 10⁶ events
- ► Integrated luminosity: 8.145 µb⁻¹

Ultra peripheral collisions (UPC)

 $\eta > 10.94$

UPC simulation

STARLIGHT + SOPHIA/DPMJET

p-Pb: beam centre

- Beam centre fit is needed:
 - select pseudorapidity regions
 - artificially include the real value in simulations
- Event selection:
 - E > 1.5 TeV
 - $-L_{20\%} < 10 X_0$
 - $-L_{90\%} > 20 X_0$
 - ~90k events

p-Pb: beam centre

• Fit result:

$$X = (3.53 +- 0.05) \text{ mm}$$
 $Y = (-0.58 +- 0.03) \text{ mm}$

- Systematic error
 - Comparison with 1D fit:

```
X = (3.59 +- 0.09) mm Y = (-0.58 +- 0.03) mm \Delta X = 0.06 mm, \Delta Y = 0.00 mm (!) \rightarrow consistent with statistical error
```

Modified energy threshold in event selection:

```
X = 3.85...3.01 \text{ mm} between 0.3 and 3 TeV
```

Y = -0.66...-0.40 mm between 0.3 and 3 TeV

$$\Delta X_{svs} = 0.5 \text{ mm}, \Delta Y_{svs} = 0.2 \text{ mm}$$
?

Need to check time dependence of beam centre

Photon spectra in p-Pb (w/o UPC!)

- $\eta > 10.94$: lower yield from all models
- $8.81 < \eta < 8.99$: all models predict an harder spectrum

Combining algorithm

$$\chi^{2} = \sum_{i=1}^{N_{bin}} \sum_{a=1}^{N_{arm}} \left(\frac{R_{a,i}^{obs}(1 + S_{a,i}) - R_{i}^{comb}}{\sigma_{a,i}} \right)^{2} + \chi_{penalty}^{2}$$

$$S_{a,i} \equiv \sum_{j=1}^{N_{sys}} f_{a,i}^{j} \epsilon_{a}^{j}$$

$$X_{penalty}^{2} \equiv \sum_{j=1}^{N_{sys}} \sum_{a=1}^{N_{arm}} |\epsilon_{a}^{j}|^{2}$$