Analysis status: A_N of very forward π^0 production

LHCf-RHICf joint meeting

27 Nov 2018 Minho Kim

RHICf experiment & π^0

One photon energy reconstruction

- SumdE
- E_{photon}

- Up to 12th plate was used for leakage-out correction.
- Leakage-out map of neutron ver. is also applied to neutron case.

Type-I π⁰ Energy reconstruction

- In case of Type-I π^0 , there should be energy contaminations from the photon hitting the other tower.
- This contamination was corrected by studying the ratio between the energy deposit when a photon hit the center of tower and its contamination to the other tower.

Type-II π^0 energy reconstruction

- Because GSO bar peak height well reproduces the initial photon energy, energy fraction from π^0 to two photon can be studied by it.
- Energy fraction $p = h_1 / (h_1 + h_2)$ and $q = h_2 / (h_1 + h_2)$ is used for leakage-out correction of Type-II π^0 .

Type-II π⁰ peak matching

- X position with higher peak was matched with Y position with higher one.
- If (X, Y) is matched by this rule, right matching ratio is expected to be around 90%.

Type-II π^0 energy reconstruction

■ To reconstruct the Type-II π^0 energy, ideally

$$a(x_1, y_1)dE(x_1, y_1) + a(x_2, y_2)dE(x_2, y_2) = dE_1(0, 0) + dE_2(0, 0)$$

However, we only measure the inclusive one,

$$dE(x_1, y_1) + dE(x_2, y_2)$$

Energy fraction p and q can be used to solve this problem.

$$dE_1(0, 0) + dE_2(0, 0) \rightarrow SumdE_1 + SumdE_2 \rightarrow E_1 + E_2 = E_1$$

Energy resolution of π^0 reconstruction

- Around 2.7% energy resolution is expected to both Type-I and Type-II.
- Energy reconstruction procedure for Type-II looks OK.

p_T resolution of π^0 reconstruction

- However, pT resolution of Type-I is much better than Type-II.
- This is because the peak position is more fluctuated when two photons hit the detector than one.
- But This fluctuation is negligible compared to leakage map scale.

Invariant mass of two photon

- Clear π^0 peak is shown around 135 MeV/c² with ~9 MeV/c² width.
- Background part usually comes from coincidence of the other particles, not wrong reconstruction.

Final π^0 candidate

- Invariant mass of two photon was fitted by combination of polynomial for background and Gaussian for actual π^0 .
- \blacksquare π^0 peak \pm 3sigma was chosen for final π^0 candidate.

Transverse single spin asymmetry (A_N)

A_N is defined as a left-right asymmetry of the cross section of a specific particle.

lacksquare A_N is obtained from azimuthal angle modulation. A_N is sensitive to the normal direction of beam polarization.

A_N calculation

- P was measured by p-Carbon polarimeter.
- R was calculated by luminosity ratio of charged particles near IP.
- \blacksquare D_{Φ} was calculated referring to the measured Φ distribution of detected π^0 .
- Beam center calculation is necessary for the $N(p_T, x_F)$.

Beam center calculation by neutron hit map

- High energy neutron (E_{rec} > 200 GeV) was used.
- Run-by-run calculated beam center shows quite stable values.
- Beam center calculation will be improved in next reconstruction after applying neutron leakage map.

Beam center calculation by neutron A_N

- lacksquare A_N is sensitive to the normal direction of beam polarization, beam center y can be calculated by A_N scan as a function y.
- Difference of A_N between different beam center: (X_{hit}, Y_{hit}) or Y_{scan} was applied to the systematic uncertainty of A_N .

Background A_N subtraction

$$A_N^{S+B} = \frac{(N_S^{\uparrow} + N_B^{\uparrow}) - (N_S^{\downarrow} + N_B^{\downarrow})}{(N_S^{\uparrow} + N_B^{\uparrow}) + (N_S^{\downarrow} + N_B^{\downarrow})}$$
$$= \left(\frac{N_S}{N_{S+B}}\right) A_N^S + \left(\frac{N_B}{N_{S+B}}\right) A_N^B$$

- Due to π^0 tail, if the background fitting completely covers the background area, calculated B/S ratio should be smaller than actual one.
- lacktriangle Actual B/S ratio should be smaller than calculated one, but larger than 0.
- Invariant mass area 5sigma further than π^0 peak was used for background A_N .

π⁰ kinematics

- First, A_N of very forward π^0 was studied as a function of every 0.1 GeV/c p_T for three different x_F ranges.
- \blacksquare π^{0} 's p_{T} and x_{F} resolution of the detector is much better than its binning.

Cross check works

agreement with expectation.

-0.2

0

0.1

0.2

 A_N

8.0 p_ (GeV/c)

Preliminary result of very forward π^0 A_N

- AN of very forward π^0 looks increasing as a function of p_T , but comparitvely flat as a function of x_F .
- Its x_F dependence is also being studied now.

Comparison with forward π^0 A_N

p_T (GeV/c)
Different η range: Different types of events contribute differently. Event type dependence study is necessary with STAR detectors.

Combined analysis with STAR

- BBC signal dependence for forward π^0 A_N was already observed at STAR.
- We may identify diffractive event using BBC, TPC and Roman pot.

Status of combined analysis with STAR

- Data structure in STAR library is almost complete. (It was delayed due to thanks giving holidays...)
- Based on this structure, data structure for pDST will be also prepared soon as we can handle at least A1cal2 at µDST.
- Because now RHICf local event number is available in µDST, we'll start making detailed analysis code to see the event type dependence.

Summary

- \blacksquare RHICf experiment successfully measured very forward particle production, mainly neutron, single photon and π^0 .
- Recently, preliminary result of the very forward π^0 A_N was released and surprisingly it showed non-zero asymmetry.
- In order to one step further understand the non-zero A_N of (very) forward π^0 production, combined analysis with other STAR detectors is ongoing to see its event type dependence.