Single spin asymmetries for $\pi^{0} \mathrm{~s}$ and neutrons in pp and pA

Gaku Mitsuka（KEK，Accelerator laboratory）
27 Nov． 2018
LHCf－RHICf Joint meeting
（Villa Ruspoli，Firenze）

The SuperKEKB e+e- accelerator

Outline

- Single π^{0} asymmetry in pp collisions at $\sqrt{ } \mathrm{s}=510 \mathrm{GeV}$
- Trial and error...
- Single neutron asymmetry in pA collisions at $\sqrt{ } s=200 \mathrm{GeV}$
- Ultraperipheral collisions at the LHC and RHIC
- Photon + polarized proton scatterings
- UPC with polarized protons
- My thoughts on future RHICf

References

Rigorous

Variety of topics

Rigorous

Why is spin important?

Revealing what's happening in particle production
\rightarrow many observables as much as possible

- Publications so far: cross section, scaling, $\mathrm{p}_{\mathrm{T}}, \mathrm{y}$, and x_{F}
- Preliminary: N_{ch}, double arm correlation, and $\underline{\mathrm{A}_{\mathrm{N}}}$

Neutron and π^{0} asymmetries in pp

 Motivation of this talk is to find a mechanism that can explain forward asymmetries.

- π^{0} asymmetry increases $\sim 16 \% / \mathrm{GeV}$, instead of neutron asymmetry $\sim-32 \% / \mathrm{GeV}$. $-\pi^{0}$ neutron is $\sim-1 / 2$. Could $\pi^{0} s$ be understood by a similar manner as neutrons?

Looking at only A_{N} is insufficient

Let's see what's happening in π^{0} production

Elastic-like $\boldsymbol{\pi}^{0}$ asymmetry (P and $\boldsymbol{\gamma}$)

- Well known Coulomb-nuclear interference (CNI) gives a few \% asymmetry.
- In fact, the RHIC polarimeter ($\mathrm{p}^{\dagger}+\mathrm{C}$) is based on this mechanism.
- Calculated asymmetry of an intermediate state is far smaller than the RHICf data.
- $\mathrm{A}_{\mathrm{N}}<5 \%$ and rapidly decreases as $|\mathrm{t}|>10^{-2} \mathrm{GeV}^{2}$.

Diffractive-like π^{0} asymmetry (π and a_{1})

- High energy single diffraction is represented by a triple-reggeon diagram.
- Interference between π (spin-flip) and a_{1} (nonflip) gives nonzero asymmetry.
- Kopeliovich et al reproduced the PHENIX forward neutron asymmetry ~ -5\%.
- I tried to apply Kopeliovich's idea to π^{0} asymmetry;
- so sensitive to the a ${ }_{1}$ parameters (some parameter choices seem biased.)
- turned out few $\%$ asymmetry for $\pi^{0} \mathrm{~s}$, as expected by neutron asymmetry
- But few \% asymmetry only from a single diffraction should be insufficient to explain the RHICf inclusive measurements.

$$
\begin{gathered}
A_{N}=\frac{A_{N}^{\text {diff }} \sigma^{\text {diff }}+A_{N}^{\text {non-diff }} \sigma^{\text {non-diff }}}{\sigma^{\text {diff }}+\sigma^{\text {non-diff }}} \\
A_{N}^{\text {non-diff }} \sim 0 ?
\end{gathered}
$$

Diffractive-like π^{0} asymmetry ($\pi \mathrm{N}$)

- Amplitude of π-exchange dominates other mesons/reggeons.
$\bullet \pi+p^{\dagger}$ is known to give sizable (+ and -) asymmetries for outgoing particles.
Large A_{N} diff may compensate small $\sigma^{\text {diff }} \rightarrow A_{N}=\frac{A_{N}^{\text {diff }} \sigma^{\text {diff }}+A_{N}^{\text {non-diff }} \sigma^{\text {non-diff }}}{\sigma^{\text {diff }}+\sigma^{\text {non-diff }}}$
- Low energy $\pi+p^{\dagger}$ scatterings are parametrized by partial wave amplitudes:
- Kamano et al, Ronchen et al, SAID, etc...

- Exchanged πs have small momenta, so the invariant πp^{\dagger} mass $W(=\sqrt{ } \mathrm{s})$ can be down to the $\Delta(1232)$ mass.
- Present asymmetries for outgoing πs are predicted by SAID.
- SAID papers say similar results can be obtained by other models as well.
- Large π^{0} asymmetries either in positive and negative

Fraction of diffraction among inelastic σ

$$
A_{N}=\frac{A_{N}^{\text {diff }} \sigma^{\text {diff }}+A_{N}^{\text {non-diff }} \sigma^{\text {non-diff }}}{\sigma^{\text {diff }}+\sigma^{\text {non-diff }}}
$$

- We see large π^{0} asymmetries emerge in low energy $\pi+p^{\dagger}$ scatterings.
- Next step is an estimation of π^{0} production cross sections $\sigma^{\text {diff }}$ and $\sigma^{\text {non-diff. }}$
- Diffractive cross section is calculated using the discontinuity in Mx^{2}. (I learned it from text books. Please forgive unintentional misunderstandings.)

$$
E_{p} E_{\pi^{0}} \frac{d^{6} \sigma^{d i f f}}{d^{3} p_{p} d^{3} p_{\pi^{0}}}=\frac{1}{s} \operatorname{disc}_{M_{X}^{2}} A_{p p \rightarrow X p \pi^{0}}
$$

- I did such cumbersome calculations for $\mathrm{x}_{\mathrm{F}}, \mathrm{p}_{T}$, and φ distributions.
- But at this time, I used a shortcut to use Monte Carlo simulations, PYTHIA8 and EPOS, to get overall normalization of diffraction relative to inelastic events.
- Only in PYTHIA8 and EPOS (via HEPMC), we can trace given particles' parents and children.

Highest energy π^{0} (EPOS LHC via HEPMC)

$$
\pi^{+} \pi^{-} \mathbf{K}^{+} \pi^{\mathbf{0}} \mathbf{K}^{-} \pi^{+} \pi^{\mathbf{0}} \mathbf{n}^{\mathbf{0}} \mathbf{p}^{+} 12212 \rho^{-} \overline{\mathbf{K}}^{\mathbf{0}} \mathbf{K}^{* \mathbf{0}} \rho^{-}
$$

Fraction of diffraction among inelastic σ

PYTHIA8. 235 default tune

$\pi N /$ total fraction by PYTHIA8 default

Consistent with the well known PYTHIA8's tendency:
large fraction of diffraction at high XF_{F}

mN/total fraction by PYTHIA8 Tune4C

Tune4C is tuned by the Tevatron diffraction data.

Consistent with the well known PYTHIA8's tendency:
large fraction of diffraction at high XF_{F}

mN/total fraction by EPOS LHC

EPOS LHC maybe the best to reproduce the ATLAS-LHCf data.

$\pi^{0} \mathrm{~A}_{\mathrm{N}}$ (fraction by PYTHIA8 default)

$\pi^{0} \mathbf{A}_{\mathrm{N}}$ (fraction by PYTHIA8 Tune4C)

$\pi^{0} A_{N}$ (fraction by EPOS LHC)

On Minho's plot

$$
A_{N}^{i n c l}=\frac{A_{N}^{S D} \sigma^{S D}+A_{N}^{D D} \sigma^{D D}+A_{N}^{N D} \sigma^{N D}+A_{N}^{p Q C D} \sigma^{p Q C D}}{\sigma^{S D}+\sigma^{D D}+\sigma^{N D}+\sigma^{p Q C D}}
$$

Summary of asymmetries in pp

- As presented by Minho, the RHICf preliminary data indicated large and positive asymmetries for forward π^{0}.
- I calculated π^{0} asymmetries assuming three scenarios: elastic, π / a_{1} interference, and low energy $\pi \mathrm{N}$ scatterings.
- Large asymmetries induced by $\pi \mathrm{N}$ scatterings can reproduce the RHICf data in some X_{F} regions.
- But, if this scenario is true, how can we understand neutron asymmetries that were successfully reproduced by π / a_{1} interference??

Neutron asymmetries in pAl and pAu

- Large A_{N} of ZDC inclusive in pAu may indicate

1) substantial nuclear effects in nuclear targets
2) effects of electromagnetic (EM) field produced by relativistic A targets

Ultra-peripheral collisions (UPCs)

- In order to test the EM field scenario, I developed the MC simulation framework that took into account the both hadronic interactions and ultra-peripheral collisions.
- Ultra-peripheral collisions (aka Primakoff effects); a collision of a proton with the EM field made by a relativistic nucleus when the impact parameter b is larger than $R_{A}+R_{p}$.
 GM, PRC 95, 044908 (2017).

UPC diagram (very simplified)

$\frac{d \sigma_{\mathrm{UPC}\left(p^{\uparrow} \mathrm{A} \rightarrow \pi^{+} n\right)}^{4}}{d W d b^{2} d \Omega_{n}}=\frac{d^{3} N_{\gamma^{*}}}{d W d b^{2}} \frac{d \sigma_{\gamma^{*} p^{\uparrow} \rightarrow \pi^{+} n}(W)}{d \Omega_{n}} \overline{P_{\mathrm{had}}}(b)$
photon flux (N): virtual photons produced by a relativistic nucleus
$\sigma_{\gamma+p} \rightarrow x$: inclusive cross sections of $\gamma+p$ interactions
$\overline{P_{\text {had }}}:$ a probability not having a $p+A$ hadronic interaction

Virtual photon flux

The number of virtual photons per energy and b is formulated by the Weizsacker-Williams approximation or QED (Phys. Rep 364 359‘02, NPA 442739 ' 85 , etc....):
$\frac{d^{3} N_{\gamma^{*}}}{d \omega_{\gamma^{*}}^{\text {rest }} d b^{2}}=\frac{Z^{2} \alpha}{\pi^{2}} \frac{x^{2}}{\omega_{\gamma^{*}}^{\text {rest}} b^{2}}\left(K_{1}^{2}(x)+\frac{1}{\gamma^{2}} K_{0}^{2}(x)\right) \quad$ Proportional to Z2
where $x=\omega_{\gamma^{*}}^{\text {rest }} b / \gamma$ and $\omega^{\text {rest }}$, is the virtual photon energy in the proton rest frame.
Note that the virtual photon flux depends on the charge of photon source as Z^{2}.

Photon virtuality is limited by $Q^{2}<\frac{1}{R^{2}}$. So, $Q^{2}<10^{-3} \mathrm{GeV}^{2}$

$\mathbf{\gamma}+\mathrm{p}$ interactions

$$
\frac{d \sigma_{\mathrm{UPC}\left(p^{\uparrow} \mathrm{A} \rightarrow \pi^{+} n\right)}^{4}}{d W d b^{2} d \Omega_{n}}=\frac{d^{3} N_{\gamma^{*}}}{d W d b^{2}} \frac{d \sigma_{\gamma^{*} p^{\uparrow} \rightarrow \pi^{+} n}(W)}{d \Omega_{n}} \overline{P_{\mathrm{had}}}(b)
$$

- Recalling the virtual photon flux and dominance of low-energy photons, most UPCs occur at the baryon resonance region.
- Namely, low-energy $\gamma+p$ interactions ($\omega^{\text {rest }}{ }_{\gamma}<1.5 \mathrm{GeV}$) play major role in UPCs.

Impact parameter ($\sim \mathrm{A}$) dependence

$$
\frac{d \sigma_{\mathrm{UPC}\left(p^{\uparrow} \mathrm{A} \rightarrow \pi^{+} n\right)}^{4}}{d W d b^{2} d \Omega_{n}}=\frac{d^{3} N_{\gamma^{*}}}{d W d b^{2}} \frac{d \sigma_{\gamma^{*} p^{\uparrow} \rightarrow \pi^{+} n}(W)}{d \Omega_{n}} \overline{P_{\mathrm{had}}}(b)
$$

- $\overline{\text { Phad }}$ is calculated by using a Glauber MC simulation.
- UPCs occur only if the impact parameter b is larger than the sum of radii R_{p} and R_{A}.
- $\overline{\mathrm{Phad}}(\mathrm{b})$ distribution is important not only for the cross section but also for the energy distribution.

UPC cross sections as a function of W $\frac{d \sigma_{\mathrm{UPC}\left(p^{\uparrow} \mathrm{A} \rightarrow \pi^{+} n\right)}^{4}}{d W d b^{2} d \Omega_{n}}=\frac{d^{3} N_{\gamma^{*}}}{d W d b^{2}} \frac{d \sigma_{\gamma^{*} p^{\uparrow} \rightarrow \pi^{+} n}(W)}{d \Omega_{n}} \overline{P_{\mathrm{had}}}(b)$

Origin of asymmetries in UPCs

Target asymmetry $\mathrm{T}(\boldsymbol{\theta})$ as a function of W

Hadronic interactions (one-m exchange)

$$
\begin{aligned}
z \frac{d \sigma_{p p \rightarrow n X}}{d z d p_{\mathrm{T}}^{2}}= & S^{2}\left(\frac{\alpha_{\pi}^{\prime}}{8}\right)^{2}|t| G_{\pi^{+}{ }_{p n}}^{2}(t)\left|\eta_{\pi}(t)\right|^{2} \\
& \times(1-z)^{1-2 \alpha_{\pi}(t)} \sigma_{\pi^{+}+p}^{\mathrm{tot}}\left(M_{X}^{2}\right) \\
z \frac{d \sigma_{p^{\uparrow} A \rightarrow n X}}{d z d p_{\mathrm{T}}^{2}}= & z \frac{d \sigma_{p \mathrm{~A} \rightarrow n X}}{d z d p_{\mathrm{T}}^{2}}\left(1+\cos \Phi A_{\mathrm{N}}^{\mathrm{HAD}(p \mathrm{~A})}\right) \\
= & z \frac{d \sigma_{p p \rightarrow n X}}{d z d p_{\mathrm{T}}^{2}} A^{0.42}\left(1+\cos \Phi A_{\mathrm{N}}^{\mathrm{HAD}(p \mathrm{~A})}\right)
\end{aligned}
$$

UPCs and OPE at the ZDC acceptance

Detector reference frame

Neutron A_{N} in pA: data vs. UPC+OPE

Inclusive A_{N} of the MC simulations can be written as
$A_{\mathrm{N}}^{\mathrm{UPC}+\mathrm{OPE}}=\frac{\sigma_{\mathrm{UPC}} A_{\mathrm{N}}^{\mathrm{UPC}}+\sigma_{\mathrm{OPE}} A_{\mathrm{N}}^{\mathrm{OPE}}}{\sigma_{\mathrm{UPC}}+\sigma_{\mathrm{OPE}}}$
TABLE I. Cross sections for neutron production in ultraperipheral collisions and hadronic interactions at $\sqrt{s_{\mathrm{NN}}}=$ 200 GeV . Cross sections in parentheses are calculated without η and z limits.

UPCs			Hadronic interactions	
$p^{\uparrow} \mathrm{Al}$	$p^{\uparrow} \mathrm{Au}$		$p^{\uparrow} \mathrm{Al}$	$p^{\uparrow} \mathrm{Au}$
$0.7 \mathrm{mb}(2.2 \mathrm{mb})$	$19.6 \mathrm{mb}(41.7 \mathrm{mb})$		8.3 mb	19.2 mb

Summary of asymmetries in pA

- UPCs and hadronic interactions explain the PHENIX-ZDC data.
- $ү p$ interactions produce large π^{0} asymmetries.
- Photon flux depending on Z^{2} enhances asymmetries for heavy nuclei.
$-\pi-\mathrm{a}_{1}$ interference well reproduced the asymmetries in pp.
- X_{F} and P_{T} dependent analysis is ongoing at PHENIX.

Comments on $\boldsymbol{\pi}^{0}$ asymmetries in pA

PHYSICAL REVIEW LETTERS
Measurement of the Analyzing Power in the Primakoff Process with a High-Energy Polarized Proton Beam

FIG. 2. The invariant-mass spectrum of the $\pi^{0}-p$ system in $p+\mathrm{Pb} \rightarrow \pi^{0}+p+\mathrm{Pb}$ for $\left|t^{\prime}\right|<1 \times 10^{-3}(\mathrm{GeV} / c)^{2}$. Peaks due to the $\Delta^{+}(1232)$ and $N^{*}(1520)$ resonances are shown. Regions I and II are defined in the text.

- X_{F} and p_{T} dependent π^{0} asymmetries in pAl and pAu provide crucial data to disentangle not only single spin but also particle production mechanisms.
$-\pi / a_{1}+U P C s$ or $\pi N+U P C s$ or $\pi / a_{1}+\pi N+U P C s$?
A good motivation of the RHICf (hopefully with Si) at sPHENIX

Thank you for attention and invitation!!

Backup

Invariant mass of $\pi^{0} p$ of EPOS LHC

Photopion production formalism

(Berends et al. NPB 4, 1 ‘67)

$$
\begin{equation*}
\left.\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{q}{k}\left|\left\langle\mathrm{x}_{\mathrm{f}}\right| \mathcal{F}\right| \mathrm{x}_{\mathrm{i}}\right\rangle\left.\right|^{2} \tag{A.1}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathscr{F}=\mathrm{i} \boldsymbol{\sigma} \cdot \boldsymbol{\varepsilon} \mathcal{F}_{1}+\boldsymbol{\sigma} \cdot \hat{q} \boldsymbol{\sigma} \cdot(\hat{k} \times \boldsymbol{\varepsilon}) \mathcal{F}_{2}+\mathrm{i} \boldsymbol{\sigma} \cdot \hat{k} \hat{q} \cdot \boldsymbol{\varepsilon} \mathcal{F}_{3}+\mathrm{i} \boldsymbol{\sigma} \cdot \hat{q} \hat{q} \cdot \boldsymbol{\varepsilon} \mathcal{F}_{4} \cdot \tag{A.2}\\
& \sum_{f}\left\langle\mathrm{x}_{\mathbf{f}}\right| \mathcal{F}\left|\mathrm{x}_{\mathbf{i}}\right\rangle^{\dagger}\left\langle\mathrm{x}_{\mathbf{f}}\right| \mathcal{F}\left|\mathrm{x}_{\mathbf{i}}\right\rangle=\left\langle\mathrm{x}_{\mathrm{i}}\right| \mathcal{F} \dagger \mathcal{F}\left|\mathrm{x}_{\mathbf{i}}\right\rangle \\
& \left\langle\mathrm{x}_{\mathrm{i}}\right| \mathcal{F}_{ \pm}^{\dagger} \mathcal{F}_{ \pm}\left|\mathrm{x}_{\mathrm{i}}\right\rangle=(1 \mp \hat{k} \cdot \boldsymbol{P}) \alpha+\beta \pm \sin \theta \hat{e}_{1} \cdot \boldsymbol{P}_{\gamma}+\sin \theta \hat{e}_{2} \cdot \boldsymbol{P}_{\delta} \tag{A.7}
\end{align*}
$$

where

$$
\begin{align*}
& \alpha=\left|\mathcal{F}_{1}\right|^{2}+|\mathscr{F}|^{2}-2 \cos \theta \operatorname{Re}\left(\mathcal{F}_{1}^{*} \mathcal{F}_{2}\right)+\sin ^{2} \theta \operatorname{Re}\left\{\mathcal{F}_{1}^{*} \mathcal{F}_{4}+\mathcal{F}_{2}^{*} \mathcal{F}_{3}\right\} \text {, } \tag{A.8}\\
& \beta=\frac{1}{2} \sin ^{2} \theta\left\{\left|\mathcal{F}_{3}\right|^{2}+\left|\mathcal{F}_{4}\right|^{2}+2 \cos \theta \operatorname{Re}\left(\mathscr{F}_{3}^{*} \mathcal{F}_{4}\right)\right\}, \tag{A.9}\\
& \gamma=\operatorname{Re}\left\{\mathcal{F}_{1}^{*} \mathscr{F}_{3}-\mathscr{F}_{2}^{*} \mathscr{F}_{4}\right\}+\cos \theta \operatorname{Re}\left\{\mathcal{F}_{1}^{*} \mathcal{F}_{4}-\mathcal{F}_{2}^{*} \mathscr{F}_{3}\right\}, \tag{A.10}\\
& \delta=\operatorname{Im}\left\{\mathcal{F}_{1}^{*} \mathcal{F}_{3}-\mathcal{F}_{2}^{*} \mathcal{F}_{4}\right\}+\cos \theta \operatorname{Im}\left\{\mathcal{F}_{1}^{*} \mathcal{F}_{4}-\mathcal{F}_{2}^{*} \mathcal{F}_{3}\right\} \\
& -\sin ^{2} \theta \operatorname{Im}\left(\mathcal{F}_{3}^{*} \mathcal{F}_{4}\right) \text {. } \tag{A.11}
\end{align*}
$$

Polarized nucleon, unpolavized photon

$$
\begin{aligned}
\frac{\mathrm{d} \sigma(\boldsymbol{P})}{\mathrm{d} \boldsymbol{\Omega}} & =\frac{1}{2}\left\{\frac{\mathrm{~d} \sigma_{+}(\boldsymbol{P})}{\mathrm{d} \boldsymbol{\Omega}}+\frac{\mathrm{d} \sigma_{-}(\boldsymbol{P})}{\mathrm{d} \boldsymbol{\Omega}}\right. \\
& =\frac{q}{k}\left\{\alpha+\beta+\sin _{4 \mathrm{I}} \theta \hat{e}_{\mathbf{2}} \cdot \boldsymbol{P} \delta\right\} \rightarrow \frac{d \sigma_{0}}{d \Omega}=\frac{q}{k}(\alpha+\beta), A_{N}=\frac{\sin \theta \delta}{\alpha+\beta}
\end{aligned}
$$

Photopion production

(Berends et al. NPB 4, 1 ‘67)

$$
\begin{aligned}
& \text { Eq. (A.2) } \\
& \underset{\mathscr{F}}{\downarrow}(s, t)=\sum_{l=0}^{\infty}\left[\begin{array}{cc}
G_{l}(x) & 0 \\
0 & H_{l}(x)
\end{array}\right] \tilde{M}_{l}(s), \tilde{M}_{l}=
\end{aligned}
$$

(Drechsel and Tiator, JphysG 18, 449‘92) \qquad Several models provide their predicted multipoles. I use Multipole decomposition: MAID 2007 available at https://maid.kph.uni-mainz.de.

$$
\begin{aligned}
R_{\mathrm{T}}=\left|E_{0+}\right|^{2}+ & \frac{1}{2}\left|2 M_{1+}+M_{1-}\right|^{2}+\frac{1}{2}\left|3 E_{1+}-M_{1+}+M_{1-}\right|^{2} \\
& +2 \cos \Theta \operatorname{Re}\left\{E_{0+}^{*}\left(3 E_{1+}+M_{1+}-M_{1-}\right)\right\} \\
& +\cos ^{2} \Theta\left(\left|3 E_{1+}+M_{1+}-M_{1-}\right|^{2}-\frac{1}{2}\left|2 M_{1+}+M_{1-}\right|^{2}\right. \\
& \left.-\frac{1}{2}\left|3 E_{1+}-M_{1+}+M_{1-}\right|^{2}\right)
\end{aligned}
$$

$$
R_{\mathrm{T}}\left(n_{i}\right)=3 \sin \Theta \operatorname{Im}\left\{E_{0+}^{*}\left(E_{1+}-M_{1+}\right)-\cos \Theta\left(E_{1+}^{*}\left(4 M_{1+}-M_{1-}\right)+M_{1+}^{*} M_{1-}\right)\right\}
$$

$$
\begin{aligned}
R_{\mathrm{T}}^{00} \equiv R_{\mathrm{T}} \text { and } R_{\mathrm{T}}^{0 y} \equiv R_{\mathrm{T}}\left(n_{i}\right) \frac{d \sigma_{\gamma^{*} p^{\uparrow} \rightarrow \pi^{+} n}}{d \Omega_{\pi}} & =\frac{|q|}{\omega_{\gamma^{*}}}\left(R_{T}^{00}+P_{y} R_{T}^{0 y}\right) \\
\text { pion and neutron production in UPCs } & =\frac{|q|}{\omega_{\gamma^{*}}} R_{T}^{00}\left(1+P_{2} \cos \phi_{\pi} T\left(\theta_{\pi}\right)\right)
\end{aligned}
$$

Inclusive cross sections of $\gamma+p$ interactions

Only 1π channel is simulated in this study. It is hard to simulate neutron momenta in 2π channels (future study?)

