Single spin asymmetries for π⁰s and neutrons in pp and pA Gaku Mitsuka (KEK, Accelerator laboratory) 27 Nov. 2018 LHCf-RHICf Joint meeting (Villa Ruspoli, Firenze) ### The SuperKEKB e+e- accelerator #### **Outline** - Single π^0 asymmetry in pp collisions at $\sqrt{s} = 510$ GeV - Trial and error... - Single neutron asymmetry in pA collisions at $\sqrt{s} = 200 \text{ GeV}$ - Ultraperipheral collisions at the LHC and RHIC - Photon + polarized proton scatterings - UPC with polarized protons - My thoughts on future RHICf #### References **Rigorous** **Variety of topics** **Rigorous** #### Why is spin important? 5000 #### Neutron and π^0 asymmetries in pp Motivation of this talk is to find a mechanism that can explain forward asymmetries. - π^0 asymmetry increases ~ 16%/GeV, instead of neutron asymmetry ~ -32%/GeV. - π^0 /neutron is ~ -1/2. Could π^0 s be understood by a similar manner as neutrons? #### Looking at only A_N is insufficient $$A_N^{incl} = \frac{A_N^{SD} \sigma^{SD} + A_N^{DD} \sigma^{DD} + A_N^{ND} \sigma^{ND} + A_N^{pQCD} \sigma^{pQCD}}{\sigma^{SD} + \sigma^{DD} + \sigma^{ND} + \sigma^{pQCD}}$$ $$\sigma^{incl} = \sigma^{SD} + \sigma^{DD} + \sigma^{ND} + \sigma^{pQCD}$$ Very forward neutrons are exceptionally lucky; we can focus on only one- π exchange. It is not true for forward π^0 s. Let's see what's happening in π^0 production #### Elastic-like π^0 asymmetry (P and γ) - Well known Coulomb-nuclear interference (CNI) gives a few % asymmetry. - In fact, the RHIC polarimeter ($p^{\uparrow}+C$) is based on this mechanism. - Calculated asymmetry of an intermediate state is far smaller than the RHICf data. - A_N < 5% and rapidly decreases as $|t| > 10^{-2}$ GeV². #### Diffractive-like π^0 asymmetry (π and a_1) - High energy single diffraction is represented by a triple-reggeon diagram. - Interference between π (spin-flip) and a_1 (nonflip) gives nonzero asymmetry. - Kopeliovich et al reproduced the PHENIX forward neutron asymmetry \sim -5%. - I tried to apply Kopeliovich's idea to π^0 asymmetry; - so sensitive to the a₁ parameters (some parameter choices seem biased.) - turned out few % asymmetry for π^0 s, as expected by neutron asymmetry - But few % asymmetry only from a single diffraction should be insufficient to explain the RHICf inclusive measurements. $A_N = \frac{A_N^{diff} \sigma^{diff} + A_N^{non-diff} \sigma^{non-diff}}{\sigma^{diff} + \sigma^{non-diff}}$ $$A_N^{non\text{-}diff} \sim 0?$$ #### Diffractive-like π^0 asymmetry (πN) - Amplitude of π -exchange dominates other mesons/reggeons. - $\pi+p^{\uparrow}$ is known to give sizable (+ and -) asymmetries for outgoing particles. $$\text{Large A}_{\text{N}}^{\text{diff may compensate small } \sigma^{\text{diff}} \rightarrow A_N = \frac{A_N^{diff} \sigma^{diff} + A_N^{non\text{-}diff} \sigma^{non\text{-}diff}}{\sigma^{diff} + \sigma^{non\text{-}diff}}$$ - Low energy $\pi+p^{\uparrow}$ scatterings are parametrized by partial wave amplitudes: - Kamano et al, Ronchen et al, SAID, etc... - Exchanged πs have small momenta, so the invariant πp^{\uparrow} mass W (= \sqrt{s}) can be down to the $\Delta(1232)$ mass. - Present asymmetries for outgoing πs are predicted by SAID. - SAID papers say similar results can be obtained by other models as well. - Large π^0 asymmetries either in positive and negative #### Fraction of diffraction among inelastic of $$A_{N} = \frac{A_{N}^{diff}\sigma^{diff} + A_{N}^{non-diff}\sigma^{non-diff}}{\sigma^{diff} + \sigma^{non-diff}}$$ - We see large π^0 asymmetries emerge in low energy $\pi + p^{\uparrow}$ scatterings. - Next step is an estimation of π^0 production cross sections σ^{diff} and $\sigma^{non-diff}$. - Diffractive cross section is calculated using the discontinuity in $M_{\rm x}^2$. (I learned it from text books. Please forgive unintentional misunderstandings.) $$E_{p}E_{\pi^{0}}\frac{d^{6}\sigma^{diff}}{d^{3}p_{p}d^{3}p_{\pi^{0}}} = \frac{1}{s}\operatorname{disc}_{M_{X}^{2}}A_{pp\to Xp\pi^{0}}$$ - I did such cumbersome calculations for x_F , p_T , and ϕ distributions. - But at this time, I used a shortcut to use Monte Carlo simulations, PYTHIA8 and EPOS, to get overall <u>normalization</u> of diffraction relative to inelastic events. - Only in PYTHIA8 and EPOS (via HEPMC), we can trace given particles' parents and children. #### Highest energy π^0 (EPOS LHC via HEPMC) #### Fraction of diffraction among inelastic o #### PYTHIA8.235 default tune #### πN/total fraction by PYTHIA8 default Consistent with the well known PYTHIA8's tendency: large fraction of diffraction at high x_F #### **πN/total fraction by PYTHIA8 Tune4C** Tune4C is tuned by the Tevatron diffraction data. Consistent with the well known PYTHIA8's tendency: large fraction of diffraction at high x_F #### **πN/total fraction by EPOS LHC** EPOS LHC maybe the best to reproduce the ATLAS-LHCf data. #### π⁰ A_N (fraction by PYTHIA8 default) #### π⁰ A_N (fraction by PYTHIA8 Tune4C) #### π⁰ A_N (fraction by EPOS LHC) #### On Minho's plot $$A_N^{incl} = \frac{A_N^{SD}\sigma^{SD} + A_N^{DD}\sigma^{DD} + A_N^{ND}\sigma^{ND} + A_N^{pQCD}\sigma^{pQCD}}{\sigma^{SD} + \sigma^{DD} + \sigma^{ND} + \sigma^{pQCD}}$$ #### Summary of asymmetries in pp - As presented by Minho, the RHICf preliminary data indicated large and positive asymmetries for forward π^0 s. - I calculated π^0 asymmetries assuming three scenarios: elastic, π/a_1 interference, and low energy πN scatterings. - Large asymmetries induced by πN scatterings can reproduce the RHICf data in some x_F regions. - But, if this scenario is true, how can we understand neutron asymmetries that were successfully reproduced by π/a_1 interference?? #### Neutron asymmetries in pAl and pAu - Large A_N of ZDC inclusive in pAu may indicate - 1) substantial nuclear effects in nuclear targets - 2) effects of electromagnetic (EM) field produced by relativistic A targets #### Ultra-peripheral collisions (UPCs) - In order to test the EM field scenario, I developed the MC simulation framework that took into account the both *hadronic interactions* and *ultra-peripheral collisions*. - Ultra-peripheral collisions (aka Primakoff effects); a collision of a proton with the EM field made by a relativistic nucleus when the impact parameter b is larger than R_A+R_p . Please see my papers for details: GM, EPJ C **75**, 614 (2015) and GM, PRC **95**, 044908 (2017). #### **UPC diagram (very simplified)** $$\frac{d\sigma_{\text{UPC}(p^{\uparrow}A\to\pi^{+}n)}^{4}}{dWdb^{2}d\Omega_{n}} = \frac{d^{3}N_{\gamma^{*}}}{dWdb^{2}} \frac{d\sigma_{\gamma^{*}p^{\uparrow}\to\pi^{+}n}(W)}{d\Omega_{n}} \overline{P_{\text{had}}}(b)$$ photon flux (N): virtual photons produced by a relativistic nucleus $\sigma_{\gamma+p\to\chi}$: inclusive cross sections of $\gamma+p$ interactions $\overline{P_{had}}$: a probability not having a p+A hadronic interaction #### Virtual photon flux The number of virtual photons per energy and b is formulated by the Weizsacker-Williams approximation or QED (Phys. Rep 364 359 '02, NPA 442 739 '85, etc...): $$\frac{d^3N_{\gamma^*}}{d\omega_{\gamma^*}^{rest}db^2} = \frac{Z^2\alpha}{\pi^2}\frac{x^2}{\omega_{\gamma^*}^{rest}b^2}\left(K_1^2(x) + \frac{1}{\gamma^2}K_0^2(x)\right) \qquad \text{Proportional to Z}^2$$ where $x = \omega_{\gamma^*}^{rest} b/\gamma$ and ω^{rest}_{γ} is the virtual photon energy in the proton rest frame. Note that the virtual photon flux depends on the charge of photon source as Z². Photon virtuality is limited by $Q^2 < \frac{1}{R^2}$. So, $Q^2 < 10^{-3} \, {\rm GeV}^2$ #### γ+p interactions $$\frac{d\sigma_{\mathrm{UPC}(p^\uparrow\mathrm{A}\to\pi^+n)}^4}{dWdb^2d\Omega_n} = \frac{d^3N_{\gamma^*}}{dWdb^2} \frac{d\sigma_{\gamma^*p^\uparrow\to\pi^+n}(W)}{d\Omega_n} \overline{P_{\mathrm{had}}}(b)$$ Resonance region Experimental data are available at PDG (mainly in 50s and 60s.) Multiplion production Multiplion production - Recalling the virtual photon flux and dominance of low-energy photons, most UPCs occur at the baryon resonance region. - Namely, low-energy γ +p interactions (ω^{rest}_{γ} < 1.5 GeV) play major role in UPCs. #### Impact parameter (~A) dependence $$\frac{d\sigma_{\text{UPC}(p^{\uparrow}A\to\pi^{+}n)}^{4}}{dWdb^{2}d\Omega_{n}} = \frac{d^{3}N_{\gamma^{*}}}{dWdb^{2}} \frac{d\sigma_{\gamma^{*}p^{\uparrow}\to\pi^{+}n}(W)}{d\Omega_{n}} \overline{P_{\text{had}}(b)}$$ - P_{had} is calculated by using a Glauber MC simulation. - UPCs occur only if the impact parameter b is larger than the sum of radii R_p and R_A. - P_{had}(b) distribution is important not only for the cross section but also for the energy distribution. #### **UPC cross sections as a function of W** #### Origin of asymmetries in UPCs (courtesy of I. Nakagawa) $$A_N^{\text{UPC}} \sim T(\theta_\pi) \equiv \frac{R_T^{0y}}{R_T^{00}} \propto \text{Im}\{E_{0+}^*(E_{1+} - M_{1+}) - 4\cos\theta_\pi(E_{1+}^*M_{1+})...\}$$ #### Target asymmetry $T(\theta)$ as a function of W #### Hadronic interactions (one-π exchange) - I follow Kopeliovich's idea (π/a_1 interference) for hadronic interactions. - Calculation of pomeron-nuclear interactions is far beyond my skill!! So, I simply multiply pp cross sections with the A-dependent factors. $$z \frac{d\sigma_{pp \to nX}}{dz dp_{\mathrm{T}}^{2}} = S^{2} \left(\frac{\alpha_{\pi}'}{8}\right)^{2} |t| G_{\pi^{+}pn}^{2}(t) |\eta_{\pi}(t)|^{2}$$ $$\times (1-z)^{1-2\alpha_{\pi}(t)} \sigma_{\pi^{+}+p}^{\mathrm{tot}}(M_{X}^{2}),$$ $$z \frac{d\sigma_{p^{\uparrow}A \to nX}}{dz dp_{\mathrm{T}}^{2}} = z \frac{d\sigma_{pA \to nX}}{dz dp_{\mathrm{T}}^{2}} (1 + \cos \Phi A_{\mathrm{N}}^{\mathrm{HAD}(pA)})$$ $$= z \frac{d\sigma_{pp \to nX}}{dz dp_{\mathrm{T}}^{2}} A^{0.42} (1 + \cos \Phi A_{\mathrm{N}}^{\mathrm{HAD}(pA)})$$ #### **UPCs and OPE at the ZDC acceptance** #### Neutron A_N in pA: data vs. UPC+OPE Inclusive A_N of the MC simulations can be written as $$A_{\mathrm{N}}^{\mathrm{UPC+OPE}} = \frac{\sigma_{\mathrm{UPC}} A_{\mathrm{N}}^{\mathrm{UPC}} + \sigma_{\mathrm{OPE}} A_{\mathrm{N}}^{\mathrm{OPE}}}{\sigma_{\mathrm{UPC}} + \sigma_{\mathrm{OPE}}}$$ TABLE I. Cross sections for neutron production in ultraperipheral collisions and hadronic interactions at $\sqrt{s_{\rm NN}}=200\,{\rm GeV}$. Cross sections in parentheses are calculated without η and z limits. | UPCs Ha | dronic interactions | |---|---------------------| | $p^{\uparrow} \text{Al}$ $p^{\uparrow} \text{Au}$ $p^{\uparrow} \text{Au}$ $p^{\uparrow} \text{Au}$ 0.7 mb (2.2 mb) 19.6 mb (41.7 mb) 8.3 | 1 | #### Summary of asymmetries in pA - UPCs and hadronic interactions explain the PHENIX-ZDC data. - γp interactions produce large π^0 asymmetries. - Photon flux depending on Z² enhances asymmetries for heavy nuclei. - π -a₁ interference well reproduced the asymmetries in pp. - x_F and p_T dependent analysis is ongoing at PHENIX. #### Comments on π^0 asymmetries in pA FIG. 2. The invariant-mass spectrum of the π^0 -p system in $p+\mathrm{Pb} \to \pi^0+p+\mathrm{Pb}$ for $|t'|<1\times10^{-3}$ (GeV/c)². Peaks due to the $\Delta^+(1232)$ and $N^*(1520)$ resonances are shown. Regions I and II are defined in the text. • x_F and p_T dependent π^0 asymmetries in pAl and pAu provide crucial data to disentangle not only single spin but also particle production mechanisms. - π/a_1+UPCs or $\pi N+UPCs$ or $\pi/a_1+\pi N+UPCs$? #### A good motivation of the RHICf (hopefully with Si) at sPHENIX # Thank you for attention and invitation!! ## Backup #### Invariant mass of π⁰p of EPOS LHC #### Photopion production formalism $$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{q}{k} \left| \langle \chi_{\mathbf{f}} | \mathcal{F} | \chi_{\mathbf{i}} \rangle \right|^{2}, \tag{A.1}$$ where $$\mathcal{F} = i\boldsymbol{\sigma}\cdot\boldsymbol{\varepsilon} \,\,\mathcal{F}_1 + \boldsymbol{\sigma}\cdot\,\hat{q}\,\boldsymbol{\sigma}\cdot(\hat{k}\times\boldsymbol{\varepsilon})\,\,\mathcal{F}_2 + i\boldsymbol{\sigma}\cdot\,\hat{k}\,\hat{q}\cdot\boldsymbol{\varepsilon}\,\,\mathcal{F}_3 + i\boldsymbol{\sigma}\cdot\,\hat{q}\,\hat{q}\cdot\boldsymbol{\varepsilon}\,\,\mathcal{F}_4. \quad (A.2)$$ $$\sum_{f} \langle \mathbf{x_f} | \mathcal{F} | \mathbf{x_i} \rangle^{\dagger} \langle \mathbf{x_f} | \mathcal{F} | \mathbf{x_i} \rangle = \langle \mathbf{x_i} | \mathcal{F}^{\dagger} \mathcal{F} | \mathbf{x_i} \rangle$$ $$\langle \chi_{i} | \mathcal{F}_{\pm}^{\dagger} \mathcal{F}_{\pm} | \chi_{i} \rangle = (1 \mp \hat{k} \cdot P) \alpha + \beta \pm \sin \theta \, \hat{e}_{1} \cdot P_{\gamma} + \sin \theta \, \hat{e}_{2} \cdot P_{\delta}, \quad (A.7)$$ where $$\alpha = |\mathcal{F}_1|^2 + |\mathcal{F}|^2 - 2\cos\theta \operatorname{Re}(\mathcal{F}_1^*\mathcal{F}_2) + \sin^2\theta \operatorname{Re}\{\mathcal{F}_1^*\mathcal{F}_4 + \mathcal{F}_2^*\mathcal{F}_3\}, \quad (A.8)$$ $$\beta = \frac{1}{2} \sin^2 \theta \left\{ \left| \mathcal{F}_3 \right|^2 + \left| \mathcal{F}_4 \right|^2 + 2 \cos \theta \operatorname{Re} \left(\mathcal{F}_3^* \mathcal{F}_4 \right) \right\}, \tag{A.9}$$ $$\gamma = \operatorname{Re}\left\{\mathcal{F}_{1}^{*} \mathcal{F}_{3} - \mathcal{F}_{2}^{*} \mathcal{F}_{4}\right\} + \cos \theta \operatorname{Re}\left\{\mathcal{F}_{1}^{*} \mathcal{F}_{4} - \mathcal{F}_{2}^{*} \mathcal{F}_{3}\right\}, \tag{A.10}$$ $$\delta = \operatorname{Im}\left\{\mathcal{F}_{1}^{*} \mathcal{F}_{3} - \mathcal{F}_{2}^{*} \mathcal{F}_{4}\right\} + \cos \theta \operatorname{Im}\left\{\mathcal{F}_{1}^{*} \mathcal{F}_{4} - \mathcal{F}_{2}^{*} \mathcal{F}_{3}\right\}$$ $$-\sin^2\theta \operatorname{Im}(\mathcal{F}_3^*\mathcal{F}_4). \tag{A.11}$$ Polarized nucleon, unpolarized photon $$\frac{d\sigma(\mathbf{P})}{d\Omega} = \frac{1}{2} \left\{ \frac{d\sigma_{+}(\mathbf{P})}{d\Omega} + \frac{d\sigma_{-}(\mathbf{P})}{d\Omega} \right\}$$ $$=\frac{q}{k}\left\{\alpha+\beta+\sin\theta\;\hat{\boldsymbol{e}}_{2}\cdot\boldsymbol{P}\delta\right\} \rightarrow \frac{d\sigma_{0}}{d\Omega}=\frac{q}{k}(\alpha+\beta), A_{N}=\frac{\sin\theta\,\delta}{\alpha+\beta}$$ #### Photopion production (Berends et al. NPB 4, 1'67) Berends et al. NPB 4, 1'67) Eq. (A.2) $$\widetilde{\mathcal{F}}(s,t) = \sum_{l=0}^{\infty} \begin{bmatrix} G_l(x) & 0 \\ 0 & H_l(x) \end{bmatrix} \widetilde{M}_l(s), \ \widetilde{M}_l = \begin{bmatrix} E_{l+} \\ E_{l-} \\ M_{l+} \\ M_{l-} \\ S_{l-} \end{bmatrix}$$ Gaund H_l are Legendre polynomials, and \widetilde{M}_l are multipoles. (Drechsel and Tiator, JphysG 18, 449 '92) Multipole decomposition: Several models provide their predicted multipoles. I use MAID 2007 available at https://maid.kph.uni-mainz.de. $$R_{\rm T} = |E_{0+}|^2 + \frac{1}{2} |2M_{1+} + M_{1-}|^2 + \frac{1}{2} |3E_{1+} - M_{1+} + M_{1-}|^2$$ $$+ 2\cos\Theta \operatorname{Re} \{ E_{0+}^* (3E_{1+} + M_{1+} - M_{1-}) \}$$ $$+ \cos^2\Theta (|3E_{1+} + M_{1+} - M_{1-}|^2 - \frac{1}{2} |2M_{1+} + M_{1-}|^2$$ $$- \frac{1}{2} |3E_{1+} - M_{1+} + M_{1-}|^2)$$ $$R_{\rm T}(n_i) = 3\sin\Theta\,\operatorname{Im}\{E_{0+}^*(E_{1+} - M_{1+}) - \cos\Theta(E_{1+}^*(4M_{1+} - M_{1-}) + M_{1+}^*M_{1-})\}$$ $$R_{\mathrm{T}}^{00} \equiv R_{\mathrm{T}} \text{ and } R_{\mathrm{T}}^{0y} \equiv R_{\mathrm{T}}(n_i) \quad \frac{d\sigma_{\gamma^*p^\uparrow \to \pi^+n}}{d\Omega_{\pi}} = \frac{|q|}{\omega_{\gamma^*}} (R_T^{00} + P_y R_T^{0y})$$ pion and neutron production in UPCs $$= \frac{|q|}{\omega_{\gamma^*}} R_T^{00} (1 + P_2 \cos \phi_{\pi} T(\theta_{\pi}))$$ ## Inclusive cross sections of y+p interactions Only 1π channel is simulated in this study. It is hard to simulate neutron momenta in 2π channels (future study?)