Studies for p-0 collisions

H. Menjo

Motivation for p-O collisions

Ideal to reproduce HECR-Air interactions

p-Pb collisions are too heavy for CR surely.
 However, we must qualify the necessary of p-O instead of interpolation between pp + pPb.

A study was been done by H. Dembinski for the p-O section of Yellow report for LHC-RUN3. It gave an answer to it.

Hadron spectra

- Simulations done with CRMC: R. Ulrich et al. https://web.ikp.kit.edu/rulrich/crmc.html
- Model spread: EPOS-LHC, QGSJet-II.04, SIBYLL-2.3

Models mostly tuned to pp data at |eta| < 2

leta | < 2: p+p 10 % model spread, p+O 50 % model spread

Hadron spectra vs. system

Simultaneous rescaling to pp and pPb: apply correction $a + b \log(A)$, with a and b such that models converge at pp and pPb

pp and pPb together may constrain pO, but need measurement to confirm

Multiplicity in forward rapidity

- Saturation visible in EPOS, not in QGSJet-II.04
- 7 % deviation in pO even if models are fixed to same values in pp and pPb
 - 4 % shift in N_{μ} , 7 g cm-2 shift in Xmax (comparable to exp. uncertainties)
- p+p and p+Pb may be able to constrain p+O, need measurement to confirm

em-hadron energy ratio

- Hadronic energy "lost" to π^0 s cannot produce muons in late shower
- "Energy loss" described by observable E_{eγ}/E_{hadrons}

- Model predictions differ by 13 % and in shape: only EPOS has forward peaks
- Translates to > 15 % shift in $N_{\mu\nu}$ best bet to solve muon puzzle

em-had. energy ratio vs. system

- p+p and p+Pb together may be able to constrain p+O
- need p+O measurement to confirm

From Hans's studies

- In his studies, interpolation between pp and pPb works to reproduce the pO results in "MC". He concluded the necessary of confirmation with data.
- His work inspire me.
 How about the parameters measured by LHCf?
 - □ EM(photon or π^0) energy flow and spectrum shape in very forward region $\eta > 8$?
 - Neutron energy spectrum (related to inelasticity)?
 - The precision of our pp and pPb measurements is enough for the interpolation to p-O?

Measurement at 5TeV pPb

π0 results UPC <~ QCD

neutron results UPC > QCD

MC study setup

- Analysis of generator output
 - Use CRMC
 - □ Fixing $\sqrt{s_{NN}}$ = 6.5TeV and proton beam = 3.5TeV
 - 5x10⁵ collisions for each
 pp, pO, pAr, pXe, pPb
 with QGSJET2 and EPOS-LHC

Energy flow of photons

Energy flow of photons

Energy flow of photons

Energy spectrum of photons

Energy spectrum of photons

Energy spectrum of Neutron

Energy spectrum of neutrons

Large dependency on mass number however, very difficult to have spectrum of neutron spectrum with p-Pb data due to large background from UPC collisions

Summary about mass dependency

- Forward photons
 - Energy flow: Yes
 - Spectrum shape: No
 - <= p-O might be addressed by the interpolation between pp and pPb.
- Forward neutrons
 - Spectrum flow: Yes
 - <= No precise measurement at p-Pb is possible due to very large contribution from UPC

Clear motivation for p-O collisions can be from neutron (inelasticity) measurement.

Some result with pp 6.5TeV.

Fraction of diffractive events

