Boosted CoM $H \rightarrow bb$ tagger calibration: b-jet

<u>Jie Yu*</u> (for the analysis group)

*lowa State University CoM discussion

September 10, 2018

<ロ> (四) (四) (三) (三) (三)

B-tagging Calibration of $H \rightarrow b\bar{b}$ Center-of-Mass Tagger

The ATLAS Collaboration¹, Jie Yu^a, Chunhui Chen^a, Boping Chen^a, Bo Liu^{a,d}, Soeren Prell^a, Carlos Vergel Infante^a, Stephen Jiggins^b, Chris Pollard^c, Zhijun Liang^d

> ^aIowa State University ^bAlbert Ludwigs Universitaet Freiburg ^cDeutsches Elektronen-Synchrotron ^dChinese Academy of Sciences

- Analysis twiki: <u>CoM calibration twiki</u>.
- Internal note: <u>ATL-COM-PHYS-2018-1142</u> (first draft, keep updating).
- Report today:
 - Topological dependence: CoM *b*-jet tagging efficiency in $H \rightarrow b\bar{b}$, $g \rightarrow b\bar{b}$ and $t \rightarrow W + b$.
 - Publication plan: a more recent target of a CONF note; and a paper for a little later.
 - CONF note: calibration with $t\bar{t}$ events.
 - paper: calibration with tt̄ events + validation with g → bb̄ events (similar to what was done for anti-kt2 track jets in the g → bb̄ paper).
 - CoM *b*-jet calibration status: using $t\bar{t} \rightarrow l+jets$ events.

Topological dependence

・日・ ・ヨ・ ・ヨ・

- Plots from Bo to show ε_b as a function of CoM jet p_T similar in $H \to b\bar{b}$ and $t \to W + b$. (All uses Pythia8 as parton shower.)
- Larger difference might show up in $H o b ar{b}$ vs. $g o b ar{b}$
- Any difference can be quoted as systematic uncertainty.

臣

回 とくほ とくほと

Publication plans

æ

→ 御 → → 注 → → 注 →

Plan for public results: short term

- Short term (in a month or two).
- Aiming for a CONF note (we noticed that PUB plots are only possible when there was CONF note already.)
- Using data 2015 2017.
- Description of calibration method and results with $t\bar{t}$.
- The calibration study is almost done: only missing MC/MC SF, topological dependence uncertainty and running the code with flat efficiency working points!
- Urgently needed by a few physics analysis:
 - EXOT $H\gamma$: publication planed for early summer 2019
 - SM VH differential cross section measurements (at boosted region) and BSM search: Carlos' thesis.
 - EXOT VH: Stephen is interested in contributing to this.
 - Inclusive $H \rightarrow b\bar{b}$: Boping's thesis.
- Also needed by myself for searching for jobs starting from now.
- In general good for flavor tagging group in providing new taggers dedicated for boosted $H \rightarrow b\bar{b}$ searches.

2

・ロト ・回ト ・ヨト ・ヨト

- Longer term (aiming for Moriond 2019)
- Add validation with $g \rightarrow b\bar{b}$ data. Apply the method used in the antikt2 track jet paper. (No substructure variable study, but only *b*-tagging.)
- Status: Migle's gbb framework @21.2 is tested.
 - Not easy to add other sub-jet / track-jet collections (e.g. VR, ExKt, CoM).
 - OK to modify the code and produce NTuples only for CoM. But, (1) the ntuples are huge (10TB for all MC and data?), (2) link of large-R jet and CoM jets are broken at CxAODMaker level.

< 同 > < 三 > < 三 >

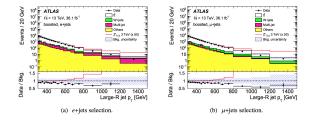
b-jet calibration status

(1日) (1日) (日)

CoM discussion (September 10, 2018)

CoM Hbb *b*-jet calibration

		e+jets o	hannel		μ +jets channel			
pre-selection	8006.2				7478.0			
$t\bar{t} \rightarrow l\nu b, qqb$		6214.1	(77.6%)	6508.0 (87.0%)			
truth channels	matched		top	<i>b</i> -quark	matched		top	<i>b</i> -quark
			not M	not M			not M	not M
truth definition	3144.7	(39.3%)	1624.7	1444.8	2998.6	(40.1%)	1903.7	1605.7
$N_{CoM jets} == 2$	3144.0	(39.3%)	1620.0	1397.6	2998.6	(40.1%)	1899.0	1603.5
large-R jet $p_{\mathrm{T}} > 350~\mathrm{GeV}$	617.7	(7.7%)	395.0	114.9	565.8	(7.6%)	428.0	120.2
MET > 30 GeV	617.7	(7.7%)	395.0	114.9	541.1	(7.2%)	410.1	115.0
$M_T^W > 30 \text{ GeV}$	608.5	(7.6%)	388.8	113.6	535.6	(7.2%)	404.2	114.0
$1 \le N_{jets} \le 4$	533.6	(6.7%)	278.7	101.5	490.7	(6.6%)	286.0	104.2
$N_{b-jets} == 1$	327.3	(4.1%)	139.2	62.1	314.6	(4.2%)	142.7	65.2
$\Delta R(lep, b-jet) < 2$	259.1	(3.2%)	110.4	55.8	298.8	(4.0%)	114.6	61.7
$125 \le M_{ljet} \le 245$	182.6	(2.3%)	19.7	7.4	210.9	(2.8%)	22.0	7.9
$60 \le M_{at4em} \le 105$	89.9	(1.1%)	3.3	3.6	104.4	(1.4%)	3.8	3.9


- In both e+jets and µ+jets, the matched tt →l+jets is about 90% out of total MC expectation.
- Very similar selection efficiency and expected number of events found with MC16d.
- Number of events normalized to @1fb⁻¹. Data15+16 has 36.1fb⁻¹ and data17 has 43.6fb⁻¹.

samples	e+jets	μ +jets
$t\bar{t} \rightarrow dilepton$	1.2	1.2
single top (Wt channel)	1.9	1.9
single top (t-channel)	0.1	0.1
single top (s-channel)	< 0.1	< 0.1
W+jets	< 0.1	< 0.1
Z+jets	< 0.1	0.1
diboson	< 0.1	< 0.1
Total backgrounds	3.2	3.3

・ 同 ト ・ ヨ ト ・ ヨ ト

Leading large-R jet $p_{\rm T}$

- More MC than data found, which also found in the $t\bar{t}$ resonance paper: arxiv:1804.10823 with same dataset.
- By fitting MC to data, the scale factor for tt
 is found to be: 0.769±0.010 (data15+16) and 0.873±0.010 (data17).

▲ □ ► ▲ □ ►

æ

- (E

ε_b calibration as a function of CoM sub-jet $p_{\rm T}$

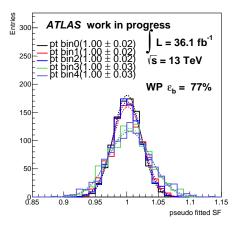
- One single SF for $t\bar{t}$ across all $p_{\rm T}$ bins \Rightarrow can use different SF for every $p_{\rm T}$ bin.
- In CoM sub-jet p_T calibration, two CoM jets' index, w₁ and w₂, are ordered according to their p_T from low to high.
- If there are two CoM sub-jet p_T bins defined, then the two CoM sub-jets p_T index would be: 00,01,11, where 0 is the low p_T CoM and 1 is the higher p_T one.
- Five CoM jet p_T bins: 0, 125, 175, 225, 275, 750 \Rightarrow in total 15 p_T regions, while expected number of events lower than 10 is excluded.
- Likelihood:

$$\mathcal{L}(w_1, w_2, p_T^i, p_T^j) = f_{bj}^{t\overline{t} \to l+jet \ matched} \cdot P_b(w_1|p_T^i) \cdot P_j(w_2|p_T^j) + f_{jb}^{t\overline{t} \to l+jet \ matched} \cdot P_j(w_1|p_T^i) \cdot P_b(w_2|p_T^j) + f_{jj}^{t\overline{t} \to l+jet \ matched} \cdot P_j(w_1|p_T^i) \cdot P_j(w_2|p_T^j) + f_{jj}^{t\overline{t} \to l+jet \ combinatorial} \cdot P_j^{comb}(w_1|p_T^i) \cdot P_j^{comb}(w_2|p_T^j) + f_{jj}^{bkg} \cdot P_j^{bkg}(w_1|p_T^i) \cdot P_j^{bkg}(w_2|p_T^j)$$

・ロト ・回ト ・ヨト ・ヨト

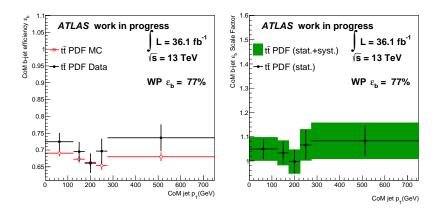
systematic uncertainties (in CoM sub-jet $p_{\rm T}$): MC16a vs. data15+16

- $\bullet\,$ Dominant contribution from large-R jet energy scale (using 'Strong'), but lower than using LJet $p_{\rm T}.$
- More or less radiation in $t\bar{t}$ has larger effect. More $t\bar{t}$ MC related items to be added.


systematic	CoM sub-jet p_T (GeV)			systematic	CoM sub-jet p_T (GeV)						
	> 0	>125	>175	>225	>275		> 0	>125	>175	>225	>275
radationAFII	$\mp 0.7\%$	$\pm 0.4\%$	∓ 0.4%	$\mp 1.5\%$	$\pm 3.3\%$	MUON MS	$\mp 0.0\%$	$\pm 0.1\%$	$\pm 0.0\%$	$\pm 0.1\%$	∓ 0.1%
herwigAFII	$\pm 0.8\%$	$\mp 0.1\%$	$\pm 0.4\%$	$\mp 1.3\%$	$\mp 0.1\%$	MUON SAGITTA RESBIAS	$\mp 0.0\%$	\mp 0.0%	\mp 0.0%	\mp 0.0%	\mp 0.0%
pileup	$\pm 0.0\%$	$\pm 0.1\%$	$\mp 0.2\%$	$\mp 0.2\%$	$\pm 0.0\%$	MUON SAGITTA RHO	$\pm 0.1\%$	$\pm 0.1\%$	\mp 0.0%	\mp 0.0%	$\mp 0.1\%$
jvt	$\pm 0.1\%$	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	$\mp 0.0\%$	MUON SCALE	$\mp 0.0\%$	$\mp 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	\pm 0.0%
bTagSF77 ext	$\pm 0.1\%$	$\pm 0.0\%$	$\mp 0.0\%$	$\mp 0.0\%$	$\mp 0.1\%$	JET JER SINGLE NP	$\pm 0.4\%$	$\pm 0.0\%$	$\pm 0.3\%$	$\mp 0.4\%$	$\pm 0.1\%$
bTagSF77 ext from charm	$\mp 0.0\%$	$\mp 0.0\%$	$\pm 0.0\%$	$\pm 0.1\%$	$\mp 0.0\%$	JET BJES Response	$\pm 0.1\%$	$\mp 0.1\%$	$\mp 0.1\%$	$\pm 0.1\%$	$\pm 0.1\%$
LJet Strong JET Comb Baseline All	$\pm 1.4\%$	$\pm 1.4\%$	$\pm 0.7\%$	$\pm 0.9\%$	$\pm 1.0\%$	JET EffectiveNP Detector1	$\mp 0.0\%$	$\pm 0.1\%$	$\pm 0.1\%$	$\mp 0.1\%$	$\pm 0.3\%$
LJet Strong JET Comb Modelling All	$\pm 1.6\%$	$\pm 1.3\%$	\pm 0.6%	$\pm 0.7\%$	$\pm 1.3\%$	JET EffectiveNP Mixed1	$\mp 0.3\%$	\mp 0.0%	$\pm 0.0\%$	\mp 0.0%	$\mp 0.1\%$
LJet Strong JET Comb TotalStat All	$\pm 0.1\%$	$\mp 0.0\%$	$\pm 0.0\%$	$\mp 0.0\%$	$\pm 0.1\%$	JET EffectiveNP Mixed2	$\pm 0.0\%$	$\mp 0.1\%$	$\mp 0.0\%$	$\pm 0.1\%$	$\mp 0.1\%$
LJet Strong JET Comb Tracking All	$\pm 0.9\%$	$\pm 0.6\%$	$\pm 0.4\%$	$\pm 0.5\%$	$\pm 0.6\%$	JET EffectiveNP Mixed3	$\pm 0.0\%$	\pm 0.0%	$\pm 0.0\%$	$\pm 0.0\%$	\pm 0.0%
leptonSF EL SF Trigger	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	JET EffectiveNP Modelling1	$\pm 0.3\%$	$\pm 0.3\%$	$\mp 0.1\%$	$\mp 0.4\%$	$\pm 0.5\%$
leptonSF EL SF Reco	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	JET EffectiveNP Modelling2	$\mp 0.2\%$	$\mp 0.0\%$	$\mp 0.0\%$	$\pm 0.0\%$	$\pm 0.2\%$
leptonSF EL SF ID	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.1\%$	$\pm 0.1\%$	$\pm 0.1\%$	JET EffectiveNP Modelling3	$\pm 0.1\%$	$\pm 0.1\%$	$\mp 0.1\%$	$\pm 0.1\%$	\mp 0.3%
leptonSF EL SF Isol	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.1\%$	JET EffectiveNP Modelling4	$\pm 0.0\%$	$\pm 0.1\%$	\mp 0.0%	\mp 0.0%	\mp 0.0%
leptonSF MU SF Trigger STAT	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	JET EffectiveNP Statistical1	$\pm 0.0\%$	$\pm 0.0\%$	$\mp 0.0\%$	$\pm 0.0\%$	$\mp 0.0\%$
leptonSF MU SF Trigger SYST	$\pm 0.1\%$	$\pm 0.1\%$	$\pm 0.0\%$	$\pm 0.1\%$	$\pm 0.1\%$	JET EffectiveNP Statistical2	\pm 0.0%	$\pm 0.0\%$	\mp 0.0%	$\pm 0.0\%$	$\mp 0.1\%$
leptonSF MU SF ID STAT	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	JET EffectiveNP Statistical3	$\pm 0.1\%$	$\pm 0.0\%$	$\mp 0.0\%$	$\pm 0.1\%$	$\mp 0.1\%$
leptonSF MU SF ID SYST	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	JET EffectiveNP Statistical4	$\pm 0.0\%$	\mp 0.0%	$\pm 0.0\%$	$\pm 0.1\%$	\mp 0.0%
leptonSF MU SF ID STAT LOWPT	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	JET EffectiveNP Statistical5	$\pm 0.0\%$	$\mp 0.0\%$	$\pm 0.0\%$	$\pm 0.1\%$	\mp 0.0%
leptonSF MU SF ID SYST LOWPT	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	JET EffectiveNP Statistical6	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.1\%$	\mp 0.0%
leptonSF MU SF Isol STAT	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	JET EtaIntCalib Modelling	$\pm 0.2\%$	$\pm 0.2\%$	$\mp 0.1\%$	$\mp 0.1\%$	$\pm 0.2\%$
leptonSF MU SF Isol SYST	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	JET EtaIntCalib NonClosure highE	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	\pm 0.0%
leptonSF MU SF TTVA STAT	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	JET EtaIntCalib NonClosure negEta	$\pm 0.0\%$	\mp 0.0%	$\pm 0.0\%$	$\pm 0.0\%$	\pm 0.0%
leptonSF MU SF TTVA SYST	\mp 0.0%	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	JET EtaIntCalib NonClosure posEta	$\pm 0.0\%$	$\pm 0.0\%$	\mp 0.0%	\mp 0.0%	\mp 0.0%
EG RESOLUTION ALL	$\pm 0.0\%$	\mp 0.0%	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	JET EtaIntCalib TotalStat	$\pm 0.0\%$	$\pm 0.1\%$	\mp 0.0%	$\pm 0.0\%$	$\mp 0.1\%$
EG SCALE ALL	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	JET Flavor Composition	$\pm 0.1\%$	$\pm 0.3\%$	$\pm 0.1\%$	$\mp 0.3\%$	\pm 0.6%
MET SoftTrk ResoPara	$\mp 0.1\%$	$\pm 0.1\%$	$\mp 0.1\%$	$\mp 0.1\%$	$\pm 0.1\%$	JET Flavor Response	$\pm 0.2\%$	$\pm 0.3\%$	$\mp 0.1\%$	$\mp 0.2\%$	\pm 0.6%
MET SoftTrk ResoPerp	$\mp 0.2\%$	\mp 0.0%	\mp 0.0%	$\pm 0.0\%$	$\pm 0.0\%$	JET Pileup OffsetMu	$\mp 0.0\%$	$\mp 0.2\%$	$\pm \ 0.1\%$	$\pm \ 0.1\%$	\pm 0.2%
MET SoftTrk Scale	$\mp 0.0\%$	$\pm 0.0\%$	\mp 0.0%	$\pm 0.1\%$	$\mp 0.1\%$	JET Pileup OffsetNPV	$\mp 0.1\%$	$\pm 0.0\%$	$\mp 0.1\%$	$\mp 0.1\%$	$\pm 0.2\%$
MUON ID	\mp 0.0%	$\mp 0.0\%$	$\pm 0.0\%$	$\pm 0.0\%$	$\mp 0.1\%$	JET Pileup PtTerm	$\mp 0.0\%$	$\pm 0.0\%$	$\mp 0.0\%$	$\mp 0.1\%$	$\pm 0.1\%$
total	$\pm 2.6\%$	$\pm 2.1\%$	$\pm 1.3\%$	$\pm 2.5\%$	\pm 3.9%						

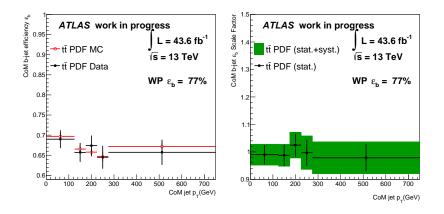
Ŷ

イロン 不同と 不同と 不同と


fit to pseudo data: MC16a vs. data15+16

- 1000 binned pseudo data, Poisson variated bin by bin from the PDF model built above.
- The SF found in each of the $p_{\rm T}$ bins are averaged at 1.0

Result of binned in CoM jet p_{T} : MC16a vs. data15+16


• Using 2015-2016 data, SF close to 1 as in CoM sub-jet $p_{\rm T}$.

Э

Results with MC16d vs. data17

• Using 2017 data, SF close to 1, similar stat+syst uncertainties compared to data15+16 fit.

æ

< ∃⇒

Summary and to do

- Summary:
 - Topological dependence: comparison of CoM *b*-jet tagging efficiency similar in $H \rightarrow b\bar{b}$ vs. $top \rightarrow W + b$ and a larger difference seen $H \rightarrow b\bar{b}$ vs. $g \rightarrow b\bar{b}$.
 - Motivation to have a quick public result for *b*-jet calibration with boosted top and add CoM SF into flavor tagging CDI: needed for various physics analyzes and job searching.
 - Validation with $g
 ightarrow b ar{b}$ events is ongoing. To be included in the CoM paper.
 - Status of b-jet calibration with tt
 events: ε_b quite flat as a function of p_T; dominant systematic uncertainties ~2-3%; INT note available. Majority of the work done. No major issue found.
 - Calibrated data 2015-2016 and data 2017 separately.
- To do:
 - Run working points other than 77%, as well as flat efficiency ones.
 - MC/MC SF for higher $p_{\rm T}$ bins $\sim {
 m TeV}$ region. \Rightarrow automatically done in CDI?
 - Note to be further updated to include all the studies we did.
 - Use the gbb framework to validate the calibrated SF (ongoing).

(1日) (1日) (日)

Backup

æ

▲ロト ▲圖ト ▲屋ト ▲屋ト

CoM discussion (September 10, 2018)

CoM Hbb *b*-jet calibration

fit to pseudo data: correlation of SF in $p_{\rm T}$ bins

To answer one of the comments earlier: No correlation observed in the SF from different p_T bins.

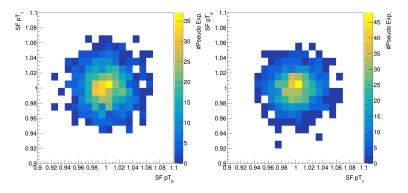
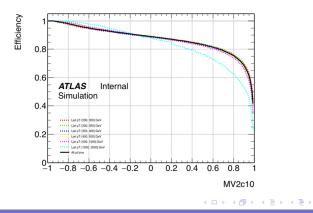


Figure: Left: X-axis: SF from 0th p_T bin; Y-axis: SF from 1st p_T bin. Right: X-axis: SF from 1st p_T bin; Y-axis: SF from 2nd p_T bin.

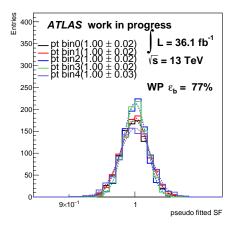
臣

Physics process	DSID	Generator	Shower	PDF(hard	Tune	σ norm	Fast/
				process)			Full
tī							
$t\bar{t} \rightarrow l\nu l\nu/qq$	410470	Powheg	Pythia8	CT10	A14	NNLO	Both
$t\bar{t} \rightarrow l\nu qq(rad.)$	410480	Powheg	Pythia8	CT10	A14	NNLO	Fast
$t\bar{t} \rightarrow l\nu qq$	410557	Powheg	Herwig7	CT10	H7UE	NNLO	Fast
$t\bar{t} \rightarrow l\nu qq$	410464	aMCatNlo	Pythia8	MEN30NLO	A14N23LO	NNLO	Fast
single top							
schan $t \rightarrow l\nu b$	410644	Powheg	Pythia8	CT10	A14	NNLO	Full
schan $\overline{t} \rightarrow l \nu b$	410644	Powheg	Pythia8	CT10	A14	NNLO	Full
tchan $t \rightarrow l \nu b$	410658	Powheg	Pythia8	CT10	A14	NNLO	Full
tchan $\bar{t} \rightarrow l \nu b$	410659	Powheg	Pythia8	CT10	A14	NNLO	Full
Wt DR $t \rightarrow inc$	410646	Powheg	Pythia8	CT10	A14	NNLO	Full
Wt DR $\overline{t} \rightarrow inc$	410647	Powheg	Pythia8	CT10	A14	NNLO	Full
Wt DS $t \rightarrow inc$	410654	Powheg	Pythia8	CT10	A14	NNLO	Full
Wt DS $\bar{t} \rightarrow inc$	410655	Powheg	Pythia8	CT10	A14	NNLO	Full
V+jets							
$W^+ \rightarrow e\nu$	361100	Powheg	Pythia8	CT10		NNLO	Full
$W^+ \rightarrow \mu\nu$	361101	Powheg	Pythia8	CT10		NNLO	Full
$W^+ \to \tau \nu$	361102	Powheg	Pythia8	CT10		NNLO	Full
$W^- \rightarrow e\nu$	361103	Powheg	Pythia8	CT10		NNLO	Full
$W^- \rightarrow \mu\nu$	361104	Powheg	Pythia8	CT10		NNLO	Full
$W^- \to \tau \nu$	361105	Powheg	Pythia8	CT10		NNLO	Full
$Z \rightarrow ee$	361106	Powheg	Pythia8	CT10		NNLO	Full
$Z \rightarrow \mu\mu$	361107	Powheg	Pythia8	CT10		NNLO	Full
$Z \rightarrow \tau \tau$	361108	Powheg	Pythia8	CT10		NNLO	Full
diboson							
$WZ \rightarrow l \nu \nu \nu$	361602	Powheg	Pythia8	CT10		NLO	Full
$WZ \rightarrow l \nu q q$	361609	Powheg	Pythia8	CT10		NLO	Full
$WW \rightarrow l \nu q q$	361606	Powheg	Pythia8	CT10		NLO	Full
$ZZ \rightarrow \nu \nu q q$	361611	Powheg	Pythia8	CT10		NLO	Full

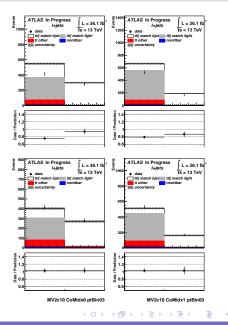


æ

$arepsilon_b$ calibration as a function of LJet p_{T}


• Using CoM sub-jet MV2c10 working point @77% (w > 0.748189) defined by Bo: <u>CoM Hbb TWiki</u> with $G \rightarrow hh \rightarrow bbbb$ samples. \Rightarrow Note: higgs large-R jet $p_T > 250$ GeV.

Higgs tagging efficiency	Subjet b-tagging efficiency	MV2c10 cut on subjet (>)
40%	63%	0.939048
50%	70%	0.877153
60%	77%	0.748189
70%	83%	0.478625
80%	89%	-0.0534781
90%	95%	-0.590703


fit to pseudo data: MC16a vs. data15+16

- 1000 binned pseudo data, Poisson variated bin by bin from the PDF model built above.
- The SF found in each of the $p_{\rm T}$ bins are averaged at 1.0

MV2c10 pre-/post-fit (0th $p_{\rm T}$ bin): MC16a vs. data15+16

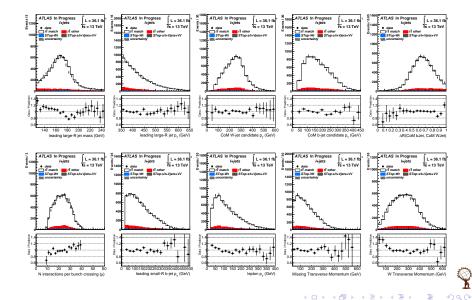
- Top, left to right: pre-fit MV2 in the *p*_T bin of 03 from **0th** and **1st** CoM jet.
- Bottom, left to right: corresponding post-fit plots.
- Post-fit data-to-MC looks nice.

b-jet calibration: $t\bar{t} \rightarrow l+jets$ event selection

- Selection of boosted $t\bar{t} \rightarrow l\nu b \, qqb$ decay mode.
- Pre-selection:
 - \geq 1 boosted large-R jet with $p_{\rm T}$ > 200 GeV, $|\eta|$ < 2.0, where the leading $p_{\rm T}$ one considered as a candidate of hadronic top.
 - Exactly one lepton (e or μ) with trigger matched.
- Further selection:
 - Exactly two CoM sub-jets associated to the large-R jet.
 - Leading large-R jet $p_{\rm T}>350~{\rm GeV}$
 - $E_{\mathrm{T}}^{\mathrm{miss}}>30~\mathrm{GeV},~m_T^W>30~\mathrm{GeV}$
 - \geq 1 small-R jet (AntiKt4TopoEM) with Δ R(LJet, j) > 1.5
 - ≥ 1 b-tagged small-R jet out of LJet.
 - $\Delta R(\text{lep, b-jet}) < 2.$
 - Large-R jet mass $125 < M_{ljet} < 245$ GeV.
 - Mass of small-R jet (AntiKt4TopoEM) in $\Delta R(LJet, j) < 1$ matched to W boson. $60 < M_{ak4} < 105 \text{ GeV}$ Note: ==1 ak4 jet, use its mass; ≥ 2 ak4 jets, use the mass of the two closest ak4 jets.
- Tools:
 - Using FTAG4 (cache: 21.2.34.0) to produce DxAOD containing slimmed large-R jets and 2 CoM sub-jets associated.
 - Using AnalysisTop.21.2.34 to produce the Ntuples (after pre-selection).

$t\bar{t}$ truth definition

- tt
 event classification: using truth top-quark, W-boson and b-quark to classify the tt
 into signal and combinatorial.
 - Matched: large-R jet matched to top-quark and its decay products of W-boson (→qq) and b-quark.
 - Top not matched: large-R jet not matched to hadronic decaying top-quark.
 - b-quark not matched: large-R jet matched to top-quark but *b*-quark is not matched.
 - Note: when top-quark is matched, W-boson is also matched.


truth definition	$t\bar{t}$ decay	$\Delta R(LJet, top)$	$\Delta R(LJet, b-quark)$
$t\overline{t} ightarrow {\sf dilepton}$	$t\overline{t} ightarrow l u b, l u b$	N/A	N/A
$tar{t} ightarrow$ ljet, match	$t\bar{t} ightarrow l u b, qqb$	<0.5	<1.0
$tar{t} ightarrow$ ljet, top not match	$t\bar{t} ightarrow l u b, qqb$	>0.5	N/A
$tar{t} ightarrow$ ljet, <i>b</i> -quark match	$tar{t} ightarrow l u b, qqb$	<0.5	>1.0

• All MC samples are listed in the backup.

臣

・ 同 ト ・ 三 ト ・ 三 ト

Data-to-MC comparison: MC16a vs. data15+16

CoM Hbb b-jet calibration