The Hybrid MPGD-based photon detectors of COMPASS RICH-1

Fulvio Tessarotto (I.N.F.N. – Trieste) on behalf of the COMPASS RICH Group

The COMPASS RICH-1 upgrade

The hybrid PD construction and installation

HV control, spark rates, noise level

Gain uniformity and stability

Hybrid PD preliminary characterization

Perspectives and Conclusions

COMPASS RICH-1 upgrade

hadron PID from 3 to 60 GeV/c; acceptance: H: 500 mrad V: 400 mrad; F. Tessarotto et al., JINST 9 (2014) C0901 trigger rates: up to ~100 KHz beam rates up to ~10⁸ Hz; material: 2.4% Xo (beam region), 22% Xo (acceptance) 80 m³ C₄F₁₀, 21 m² UV mirrors, 1.4 m² MAPMTs, 4 m² gaseous PDs

Moscow, 30/07/2018 - 10th International Workshop on Ring Imaging Cherenkov Detectors, RICH 2018

Moscow, 30/07/2018 - 10th International Workshop on Ring Imaging Cherenkov Detectors, RICH 2018

Construction and quality control

Moscow, 30/07/2018 - 10th International Workshop on Ring Imaging Cherenkov Detectors, RICH 2018

5

Csl coating of THGEMs

INFN

Moscow, 30/07/2018 - 10th International Workshop on Ring Imaging Cherenkov Detectors, RICH 2018

7

19 Csl evaporations performed at CERN in 2015 - 2016
on 15 pieces: 13 THGEMs, 1 dummy THGEM,
and 1 reference piece (best from previous coatings)
11 coated THGEMs available, 8 used + 3 sparesInverse

	THGEM number	evaporation date	at 60 degrees	at 25 degrees
THGEM 421	Thick GEM 319	1/18/2016	2.36	2.44
2.3 QE measure	Thick GEM 307	1/25/2016	2.65	2.47
2.1	Thick GEM 407	2/2/2016	2.14	2.47
1.9	Thick GEM 418	2/8/2016	2.79	2.98
1.7	Thick GEM 410	2/15/2016	2.86	3.14
1.5	Thick GEM 429	2/22/2016	2.75	2.74
-174	Thick GEM 334	2/29/2016	2.77	3.00
116 -84 -36	Thick GEM 421 re-coating	3/10/2016	2.61	2.83
■ 1.5-1.7 ■ 1.7-1.9	Reference piece	7/4/2016	3.98	3.76

QE uniformity

- 3 % r.m.s. within a photocathode
- 10 % r.m.s. among photocathodes

Optical transparency: $\frac{\pi}{2\sqrt{3}} \left(\frac{d}{n}\right)^2 \sim 0.23$

des mean THGEM QE:

coated by T. Schnider and M. Van Stenis

~ 93% of reference

Csl THGEM mounting

The new COMPASS PDs

Moscow, 30/07/2018 - 10th International Workshop on Ring Imaging Cherenkov Detectors, RICH 2018

Equipping the hybrids on RICH_1 INFN Istituto Nazionale

Fulvio TESSAROTTO Moscow, 30/07/2018 - 10th International Workshop on Ring Imaging Cherenkov Detectors, RICH 2018

Moscow, 30/07/2018 - 10th International Workshop on Ring Imaging Cherenkov Detectors, RICH 2018

during 2017 COMPASS run

Spark: event with I > 23 nA

Current sparks in THGEMs

- Rate < 1/h per detector
- Recovery time: ~ 10 s
- Fully correlated between the two layers
- Mild dependence on beam intensity

Current sparks in MICROMEGAS

- Induced by THGEMs
- Recovery time: ~1 s

spark rate well under control

beam intensity ppp on T6 (10¹³ per h)

Noise figure for the 62208 ch.

Istituto Nazionale di Fisica Nucleare

Noise level and pedestal stability

Moscow, 30/07/2018 - 10th International Workshop on Ring Imaging Cherenkov Detectors, RICH 2018 F

Fulvio TESSAROTTO 15

INFN

gain shearing among the layers and IBF

Moscow, 30/07/2018 - 10th International Workshop on Ring Imaging Cherenkov Detectors, RICH 2018

Fulvio TESSAROTTO 16

3%

good gain uniformity

A specific gain equalization procedure has been developed and used

Gain stability in time

Moscow, 30/07/2018 - 10th International Workshop on Ring Imaging Cherenkov Detectors, RICH 2018

19

(in the 2017 run the Hybrid PDs were receiving Cherenkov photons from low p particles only)

in terms of angular resolution the response of the new Hybrid detectors is similar but slightly superior to the MWPC one. MAPMT's have larger pads

Number of detected photoelectrons per ring

Critical chambers, have been changed from MWPC to Hybrid THGEM + Micromegas

Moscow, 30/07/2018 - 10th International Workshop on Ring Imaging Cherenkov Detectors, RICH 2018 Fulvio TESSAROTTO

Perspectives

The characterization of the Hybrid PD performance in terms of PID is ongoing

The remaining MWPCs of COMPASS RICH-1 are likely to be replaced for 2021

Development of an optimized detector for high space resolution based on the hybrid THGEM + MM and "mini-pads"

Study the compatibility of these hybrid PDs with CF_4 for a windowless RICH for the Electron Ion Collider

Talk by Shuddha Shankar Dasgupta

Poster by Chandradoy Chtterjee

- COMPASS RICH-1 has been upgraded with 1.4 m² of MPGD-based PDs.
- The Hybrid PD: 2 THGEMs (1 with Csl) + Micromegas are nicely operating.
- They present good gain uniformity and stability, low IBF and clean rings.
- 1.85 mrad single photon angular resolution, 10 detected photons per ring.
- A full characterization of the PID performance is ongoing.
- More Hybrid PD's will probably be mounted on RICH-1.
- R&D for future RICH projects are considering the use of this technology.

THGEM + CsI: 8 years of dedicated R&D

Moscow, 30/07/2018 - 10th International Workshop on Ring Imaging Cherenkov Detectors, RICH 2018

Moscow, 30/07/2018 - 10th International Workshop on Ring Imaging Cherenkov Detectors, RICH 2018

THGEM quality assessment

Moscow, 30/07/2018 - 10th International Workshop on Ring Imaging Cherenkov Detectors, RICH 2018

The anodic PCB

Moscow, 30/07/2018 - 10th International Workshop on Ring Imaging Cherenkov Detectors, RICH 2018

Moscow, 30/07/2018 - 10th International Workshop on Ring Imaging Cherenkov Detectors, RICH 2018

THGEM raw material selection

Our thickness uniformity requirements are stricter than those offered by producers \rightarrow material selection 50 foils of 1245 mm x 1092 mm \rightarrow cut out borders \rightarrow 800 mm x 800 mm \rightarrow thickness measurement

	terial Co., ^{w.com}	Materi	echnical Data		
PRODUCT			EM 37		
Thickness		0.407 mm			-
Copper			35µ/		
Sheet Size			245 x 1 (
Permittivity 1 MHz	2.5.5.9	C-24/23/50	-	4.8	
(RC 50%) 1 GHz			-	4.3	
Volume resistivity	2.5.17.1	C-96/35/90	MΩ-cm	>10 ¹⁰	14
Surface resistivity	2.5.17.1	C-96/35/90	MΩ	>109	Core la

Mitutoyo EURO CA776

coordinate measuring machine with ruby touch probe, hosted in a thermalized room

Positioning blocks

700 X 700 mm² active area borders underpressure induced flatness

for each foil 36 x 36 points in square pattern are measured 2 measurements (direct and reversed) to allow consistency checks.

Moscow, 30/07/2018 - 10th International Workshop on Ring Imaging Cherenkov Detectors, RICH 2018

Production of the THGEMs at ELTOS

field shaping electrodes

large field values at the chamber edges and on the guard wires

isolating material (Tufnol 6F/45) protection Field shaping electrodes in the isolating material protections of the chamber frames

