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Gaseous Detectors

This first book to critically summarize the latest
achievements and emerging applications within this
interdisciplinary toPic focuses on one of the most important
types of detectors for elementary particles and photons:

e Ep—— resistive plate chambers (RPCs).

e e In tRe first part, ;c]he outlstadndingbinterr&ational tearr? of
A authors comprehensively describes and presents the
LA AN features and design of single and double-layer RPCs before

covering more advanced multi-layer RPCs. The second part
then focuses on the application of RPCs in high energy
physics, materials science, medicine and security.
Throughout, the eerrienced authors adopt a didactic
approach, with each subject presented in a simple way,
increasing in complexity step by step.




Why this book is presenting at WG2 “Detector Physics and performance”?

...because it may be useful for RD51 community

T. Alexopoulos et al. / Nuclear Instruments and Methods in Physics Research A 640 (2011) 110-118
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Fig. 1. Schematic drawing of the p-RWELL PCB.



There is a famous statement from
Rui: “All future micropattern
detectors will be resistive

III
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Let’s highlight some selected
topics, which could be
interesting for the RD51
community




|. Pioneers: “Pestov” counters

(“guenched spark” mode)
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1. “Santonico” single and double-gap Bakelite RPCs
I1.1. Operation in “streamer mode”

-----------

e ™

Resitive
plate

Resistive
plate

HV Al foil

Santonico and his collaborators transformed the idea to practical realization-large area RPCS



Physics behind their operation

Avalanche touching the l
resistive anode of the RPC
d
RPC anode
N HY —— T
Low resistivity coating An area on the resistive anode
for the HV feeding affected by the charging up effect
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“Quenched” sparks (called by the RPC
community as “streamer mode”)
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Main characteristics
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I1.2. A breakthrough -avalanche mode
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Effective gain

Advances in rate characteristics
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Efficiency (%)

Further progress
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Nowadays is very popular so-called “Chinese glass” = Pestov glass



Time resolution (ps)
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Signal induced on strips and spatial resolution

Ramo theorem(was already presented at the RD51 meeting by W. Riegler)
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Special designs: RPCs with secondary electron
emitters
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1l. Another breakthrough-
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Multigap timing RPC
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Positive high-voltage layer
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High position resolution timing RPCs!
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As follows from the martials presented
in the book, to build and operate
these state of art RPCs requires high
experimental and electronic skills, and,
of course, deep understanding of the
RPC operation, signal formation a
propagation

Equivalent circuit for consideration signal formation
And propagation in multistrip timing RPCs

Fonte, P. (2013b) Frequency-domain formulation of signal propagation in multistrip
resistive plate chambers and its low-loss, weak-coupling analytical
approximation. JINST, 8, PO8007.




Chapter 8. New Developments in the
Family of Gaseous Detectors: Micropattern
Detectors with Resistive Electrodes -285

In this chapter

an exhaustive review of resistive micropattern detectors is given



Resistive MICROMEGAS for ATLAS

Large-area microwell
for CMS muon system
upgrade
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1l. Applications



..RPC applicatior

nigh-energy and

Wn
3.

astrophysms experiments are well known

p_ /7 (GeV/c)

Nowadays Bakelite RPCs cover many
thousand m2 in LHC and other
experiments

Glass multigap timing RPCs also are
successfully using in many experiments



Very exciting is a scientific/educational project-
EEE

Search for 102°eV or more



Highlights of applications
beyond high energy physics
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Mammographic scanner (XCounter)
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Conclusions

This book is devoted to those gaseous detectors of elementary particles that
incorporate resistive electrodes, whose most well-established instance is the
resistive plate chamber. These detectors have several unique and important
practical features, such as good spark protection and excellent time resolution,
even down to few tens of picoseconds.

There are numerous scientific publications on many difterent instances of resis-
tive plate chamber designs, and their operation and performance, but there are
still few review papers, especially books, summarizing their basic principles of
operation, historical development, latest achievements, and their growing appli-
cations in various fields.

This book is intended to cover the matters mentioned above and integrate
them with the available physical modelling. It was meant to target a wide
auditorium, including beginners of the discipline. We hope that this is achieved
by an approach where the subject is presented first in a simple way, and later on
with a slow increase in complexity.

At the same time, we believe that it will be very useful for the scientific
community, where there is an established body of knowledge to be summarized
and critically evaluated.

Both electronic and hard copies are available from the CERN library



