Photocathode characterisation device Status

Florian M. Brunbauer on behalf of the CERN EP-DT-DD GDD group

September 26, 2017

New materials

Photocathodes

Spark on Csl photocathode

Ion feedback on CsI photocathode

Csl photocathodes are sensitive to **sparks** and ion **bombardment**

Robust photocathode:

- Diamond as photocathode
 DLC photocathode
- Purely metallic photocathodes
 Chromium, aluminum already tested

Protecting Csl photocathode by:

- Thin layers applied by ALD
- LiF protection layer
- Graphene as protection layer

Development of photocathode characterisation device (ASSET) to study QE after **ion bombardment** and influence of **protection layers**

UV beam

UV light path through lens and beamsplitter

UV beam (uncollimated) focused to ≈5x5mm size

UV light beam profileRecorded on CCD sensor

UV beam

Alignment issue prevents using photodiode for absolute reference

About 1cm **misalignment** from axis to the back-right

First relative measurements

Alignment issue prevents using photodiode for absolute reference

Extraction efficiency

Initial rise not reflecting more extraction but attributed to warming-up period of lamp after switching on

100V to 160V range to be remeasured with more data points

Light spectrum

Lamp output spectrum

Measured **photodiode** response

Measured photodiode current as function of wavelength does not match expected lamp spectrum

Photodiode responsivity

Responsitivity of photodiode converted to quantum efficiency to determine incident number of photons

$$QE_{\lambda} = rac{R_{\lambda}}{\lambda} imes rac{hc}{e} pprox rac{R_{\lambda}}{\lambda} imes (1240 ext{ W} \cdot ext{nm/A})$$

Dividing recorded photocurrent (number of electrons) on extraction mesh by incident number of photons

First relative measurements

3 Csl photocathodes (previously used in PicoSec test beam)

3mm MgF₂ window + 3nm Cr + 18nm Csl

Next steps

Optical axis

Roll-yaw 2-axis beamsplitter movement

XY collimator movement

Optical axis

Photodiode

XY adjustment with screws

Collimator

XY adjustment with screws

Beamsplitter

mounted on rollyaw 2-axis stage

Transmission

MgF₂ window

to separate volumes and preserve vacuum in main chamber

measured in transmission mode

Calibration PMT

CsI PMT

with MgF₂ window, calibrated response as absolute reference

May be mounted instead of reference photodiode

