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Outline
 Perturbed closed orbit : (examples)

 Brief comparison for Hadron Machines and Light Sources : motivation

 Components and key design players : orbit correction methods

 Symmetry exploitation

 Controller types

 Spatial model mismatch 

 Closed orbit feedback system at SIS18 : results of first test

 Summary
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Closed orbit perturbation (examples)

4/9/2019
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SIS18 orbit movement
Diamond light source static orbit 

PhD thesis, S. Gayadeen

BPM 02 Closed orbit correction is the 
integral part of almost every 
synchrotron operation.
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ARIES workshop on Next Generation Beam Position Acquisition and Feedback Systems

4/9/2019

 A unique platform for the interaction of  COFB community from light sources and hadron synchrotrons. 

 Demands, achievements and challenges were discussed and compared for both kind of synchrotrons.

 A possibility of transfer of knowledge from light sources to hadron machines for fast orbit feedback 

systems. 
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Parameter Light sources SIS18 (example of Hadron machines)

Stability criteria (vertical plane) Less than 1 μm (10% of beam size ~ 10 μm) Less than 1 mm

Bandwidth ~ 250 Hz Up to 900 Hz

On-ramp orbit correction Not needed Required (also at LHC)

Sources Mechanical vibrations (water cooling pumps) 
/power supply ripples

Power supply ripples / Cycle to cycle 
hysteresis

Reaction time Fractions of seconds < 1 ms

Lattice Fixed lattice settings Lattice settings changes

Flexibility of operations Electron beams, Fixed energies
Almost fixed intensities

Protons to heavy ions, Variable beam 
intensities, Variable beam energies

BPM failure/malfucntion Less probability(?) More probability due to high radiation

Beta beating Lattice model more understood Variable optics

Comparison for Hadron Machines and Light Sources : motivation 
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𝑆𝑦𝑠𝑡𝑒𝑚
𝑏𝑎𝑛𝑑𝑤𝑖𝑡ℎ, 𝜔𝑐

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟
ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒,
𝑒. 𝑔. 𝐹𝑃𝐺𝐴

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟
ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒,
𝑒. 𝑔. 𝐹𝑃𝐺𝐴

𝑆𝑦𝑠𝑡𝑒𝑚
𝑏𝑎𝑛𝑑𝑤𝑖𝑡ℎ, 𝜔𝑐

𝐿𝑎𝑡𝑒𝑛𝑐𝑦, 𝜏𝐿𝑎𝑡𝑒𝑛𝑐𝑦, 𝜏
𝑆𝑝𝑎𝑡𝑖𝑎𝑙
𝑚𝑜𝑑𝑒𝑙, R
𝑆𝑝𝑎𝑡𝑖𝑎𝑙
𝑚𝑜𝑑𝑒𝑙, R

Simple closed orbit feedback system

‘m’ BPMs
‘n’ correctors

𝑆𝑦𝑠𝑡𝑒𝑚𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟

−
+

+

θ

Reference
steerer
settings 

perturbation
𝑒

error

𝑧

Sensors : Beam Position Monitor (BPM)
Actuators:  Dipole magnets (other than main bending magnets) along 

with their power supplies

+ BPMs+ steerers+ P.S.+ vac. chamber
Controller : The control logic and the hardware for controller action
System : The closed orbit to be controlled 

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟
𝑔𝑎𝑖𝑛𝑠

𝑂𝑟𝑏𝑖𝑡
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛
𝑚𝑒𝑡ℎ𝑜𝑑𝑠

𝑧𝑐 𝑠 =෍

𝑖=1

𝑁

𝜃𝑖
𝛽(𝑠𝑖)𝛽(𝑠)

2sin(𝜋𝑄𝑦)
cos( 𝜇 𝑠 − 𝜇𝑠𝑖 − 𝜋𝑄𝑦)

[𝐙]𝒎×𝟏= [𝐑]𝒎×𝒏[Ѳ]𝒏×𝟏

R is called the orbit response matrix

𝑔 𝑠 = 𝑒−𝑒𝜏
𝑠

𝑠 + 𝜔𝑐

Latency            bandwidth

𝐶 = 𝐾𝑝 +
𝐾𝑖

𝑠

Controller

Steerer settings calculation
(orbit correction methods) 

Ѳ = 𝐑−1Z
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Orbit correction methods : Harmonic analysis

4/9/2019

Modes to be removed (corrected) are selected before-hand and 
measured orbit is fitted over corresponding mode e.g. modes 
around tune frequency. 

Perturbed orbit can be Fourier expanded 

𝑦𝑐 𝑠 = 𝜃
𝛽(𝑠0)𝛽(𝑠)

2sin(𝜋𝑄𝑦)
cos( 𝜇 𝑠 − 𝜇𝑠0 − 𝜋𝑄𝑦)

𝑦𝑖 = ෍

𝑘=1

𝑛

𝑎𝑘 cos 𝑘𝜑 + 𝑏𝑘 sin 𝑘𝜑

Corrector strengths are proportional to the Fourier 
coefficients 

Mode switching is possible because of separate  channels for each mode 

Fitting for each mode is mathematically complicated procedure

Reference: L.H.Yu et al.“Real time harmonic closed orbit correction”, Nucl. Instr. Meth. A, vol. 284, pp. 268–285, 1989
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𝐑 = 𝐔𝐒𝐕𝐓

U and V are orthogonal matrices such that

𝑈−1 = 𝑈𝑇 and 𝑉−1 = 𝑉𝑇

Which helps to find inverse R-1 (if R is invertible) as  

-1
𝑅11 ⋯ 𝑅1𝑛

⋮ ⋱ ⋮
𝑅𝑚1 ⋯ 𝑅𝑚𝑛

=   
𝑉11 ⋯ 𝑉1𝑚
⋮ ⋱ ⋮

𝑉𝑚1 ⋯ 𝑉𝑚𝑚

1/𝑠1 ⋯ 0
⋮ 1/𝑠2 ⋮
0 ⋯ 1/𝑠𝑛

𝑈11 ⋯ 𝑈1𝑛

⋮ ⋱ ⋮
𝑈𝑛1 ⋯ 𝑈𝑛𝑛

T

𝑠𝑖 are called singular values arranged as
𝑠1 > 𝑠2 > 𝑠3… . 𝑠𝑛

𝑅11 ⋯ 𝑅1𝑛

⋮ ⋱ ⋮
𝑅𝑚1 ⋯ 𝑅𝑚𝑛

= 
𝑈11 ⋯ 𝑈1𝑚

⋮ ⋱ ⋮
𝑈𝑚1 ⋯ 𝑈𝑚𝑚

𝑠1 ⋯ 0
⋮ 𝑠2 ⋮
0 ⋯ 𝑠𝑛

𝑉11 ⋯ 𝑉1𝑛
⋮ ⋱ ⋮
𝑉𝑛1 ⋯ 𝑉𝑛𝑛

T

Reference: William H. Press,  Numerical recipes; The art of scientific computing  (2007)  Cambridge university press

where the columns of U and V are the 
eigenvectors of RRT and RTR

Pseudo-inverse 

Ѳ = 𝐑−1 Z

Columns of U: Black (BMP space)
Columns of V: Red(Steerer space)

SIS18 vertical plane

Orbit correction methods : Singular value decomposition (SVD)
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𝐑𝒎𝒏 =
𝛽𝑚𝛽𝑛

2sin(𝜋𝑄𝑦)
cos( 𝜇𝑚 − 𝜇𝑛 − 𝜋𝑄𝑦)

tune

phase advance
beta function

model-variation over 
ramp

triplet doublet 

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟
𝑔𝑎𝑖𝑛𝑠

𝑠𝑡𝑒𝑒𝑟𝑒𝑟
𝑠𝑡𝑟𝑒𝑛𝑔ℎ𝑡𝑠

?Ѳ = 𝐑−1Z

Missing BPMs

Let us come back to real world!

Consequence ?
DLS, storage ring

Reference: R. Singh, PhD Thesis, TU Darmstadt 2014.
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Fourier coefficients of harmonic analysis have been proposed for 
uncertainty modeling

Qy = 3.28

k=3

Reference: S. Gayadeen, “Synchrotron Electron Beam Control”, Ph.D. thesis, St. Hugh’s College, University of Oxford, UK, 2014.

𝑅11 ⋯ 𝑅1𝑛

⋮ ⋱ ⋮
𝑅𝑚1 ⋯ 𝑅𝑚𝑛

= 
𝑈11 ⋯ 𝑈1𝑚

⋮ ⋱ ⋮
𝑈𝑚1 ⋯ 𝑈𝑚𝑚

𝑠1 ⋯ 0
⋮ 𝑠2 ⋮
0 ⋯ 𝑠𝑛

𝑉11 ⋯ 𝑉1𝑛
⋮ ⋱ ⋮
𝑉𝑛1 ⋯ 𝑉𝑛𝑛

T U and V are interconnected through a phase relation

 Uncertainty modeling is required in all three matrices

𝐈 + ∆𝐑 𝐑 = 𝐈 + ∆𝐑 𝐔 𝐈 + ∆𝐑 𝐒 𝐈 + ∆𝐑 𝐕

 Over the ramp, updating of all three matrices required

 Loss of physical interpretation of modes (SVD is a numerical technique)

𝜎𝑓 =
1

2𝜋

2𝑄

𝑄2 − 𝑓2
Tune mode, k=3

Qy = 3.28

SVD in case of spatial model uncertainties
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Tune mode

 “Calming down” higher modes, but 
not eliminating

 Replaces inversion of singular 
values with

ǁ𝑠𝑛 = 𝑠𝑛

𝑠𝑛
2+𝜇2

෨𝑅 = 𝑉෨Σ𝑈𝑇

After multiple applications, the 
result will still be a fully 
corrected orbit

How many ? 

Tikhonov regularization (idea implemented at DLS)

𝜇 = 0

𝜇 = 1𝜇 = 10
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Symmetry exploitation in SIS 18 vertical ORM

4/9/2019

𝑅 =

𝑅1 𝑅2 𝑅3 𝑅4 ⋯ 𝑅𝑛
𝑅𝑛 𝑅1 𝑅2 𝑅3 ⋯ 𝑅𝑛−1
𝑅𝑛−1 𝑅𝑛 𝑅1 𝑅2 ⋯ 𝑅𝑛−2
𝑅𝑛−2 𝑅𝑛−1 𝑅𝑛 𝑅1 ⋯ 𝑅𝑛−3
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
𝑅2 𝑅3 𝑅4 𝑅5 ⋯ 𝑅1

Each row is cyclic shift of  previous row

All diagonal elements are identical

Reference: Philips J.Davis, Circulant matrices, (1994), Chelsea 

Such a square matrix is called 
Circulant Matrix

𝛽𝑏𝑝𝑚1 = 𝛽𝑏𝑝𝑚2 = 𝛽𝑏𝑝𝑚𝟑…… = 𝛽𝑏𝑝𝑚12

𝛽𝑐𝑜𝑟𝑟1 = 𝛽𝑐𝑜𝑟𝑟2 = 𝛽𝑐𝑜𝑟𝑟𝟑…… = 𝛽𝑐𝑜𝑟𝑟12

∆𝜇𝑐𝑜𝑟𝑟= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

∆𝜇𝑏𝑝𝑚= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

SIS18 lattice 
(out of scale schematics)
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𝑅 =

𝑅1 𝑅2 𝑅3 𝑅4 ⋯ 𝑅𝑛
𝑅𝑛 𝑅1 𝑅2 𝑅3 ⋯ 𝑅𝑛−1
𝑅𝑛−1 𝑅𝑛 𝑅1 𝑅2 ⋯ 𝑅𝑛−2
𝑅𝑛−2 𝑅𝑛−1 𝑅𝑛 𝑅1 ⋯ 𝑅𝑛−3
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
𝑅2 𝑅3 𝑅4 𝑅5 ⋯ 𝑅1

𝜎𝑘 = 𝜎𝑟𝑘 + 𝑗 𝜎𝑖𝑘 = ෍

𝑖

𝑛−1

𝑅𝑛 𝑒
−𝑗2𝜋𝑘𝑖/𝑛

R =
𝐹11 ⋯ 𝐹1𝑚
⋮ ⋱ ⋮

𝐹𝑚1 ⋯ 𝐹𝑚𝑚

𝜎1 ⋯ 0
⋮ 𝜎2 ⋮
0 ⋯ 𝜎𝑛

𝐹11 ⋯ 𝐹1𝑛
⋮ ⋱ ⋮
𝐹𝑛1 ⋯ 𝐹𝑛𝑛

Standard Fourier matrix

𝐹𝑘 = 𝐹𝑘𝑐 + 𝑗𝐹𝑘𝑠 𝐹𝑘𝑠 = sin
2𝜋𝑘𝑚

𝑛
+ 𝜑𝑘

𝑅−1 = 𝐹∗𝐻−1𝐹

𝐻−1 =diag(
1

𝜎𝑘
) ,k=1...n

Inverse is straightforward

Diagonalization of a Circulant matrix
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Equivalence of DFT and SVD

4/9/2019

𝑠𝑘 = 𝜎𝑘 = 𝜎𝑟𝑘
2
+ 𝜎𝑖𝑘

2

DFT: 

SVD: 𝑅11 ⋯ 𝑅1𝑛

⋮ ⋱ ⋮
𝑅𝑚1 ⋯ 𝑅𝑚𝑛

= 
𝑈11 ⋯ 𝑈1𝑚

⋮ ⋱ ⋮
𝑈𝑚1 ⋯ 𝑈𝑚𝑚

𝑠1 ⋯ 0
⋮ 𝑠2 ⋮
0 ⋯ 𝑠𝑛

𝑉11 ⋯ 𝑉1𝑛
⋮ ⋱ ⋮
𝑉𝑛1 ⋯ 𝑉𝑛𝑛

𝑅11 ⋯ 𝑅1𝑛

⋮ ⋱ ⋮
𝑅𝑚1 ⋯ 𝑅𝑚𝑛

=
𝐹11 ⋯ 𝐹1𝑚
⋮ ⋱ ⋮

𝐹𝑚1 ⋯ 𝐹𝑚𝑚

𝜎1 ⋯ 0
⋮ 𝜎2 ⋮
0 ⋯ 𝜎𝑛

𝐹11 ⋯ 𝐹1𝑛
⋮ ⋱ ⋮
𝐹𝑛1 ⋯ 𝐹𝑛𝑛

𝜑𝑑𝑘 = phase 𝜎𝑘

Why to do SVD when Circulant symmetry exits?

Reference: Herbert Karner et al.  Spectral decomposition of real Circulant matrices, Linear Algebra and its Applications, Volume 367, 2003
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Condition number =12
Condition number =9

𝑐𝑘 =
1

𝑛
< 𝐑, 𝜋𝑘 >

𝜋1 =

0 1 0 ⋯ 0
0 0 1 … 0
. . . . .
. . . ⋱ ⋮
1 0 0 ⋯ 0

𝑐1 =
1

𝑛
(𝑅1,2 + 𝑅2,3 +⋯𝑅12,1)

𝐑𝑛𝑐 = 𝑐𝑖𝑟𝑐 𝑐0, 𝑐1, 𝑐2, . . , 𝑐11

Frobenius product

𝐑 𝐑𝐧𝐜 Singular values of R and its nearest-Circulant approximation

Experimental demonstration: orbit 
correction at  SIS18

Red: perturbed orbit : (RMS = 7.12 mm)
Blue: correction using 𝐑 (RMS=2.15 mm)
Black: correction using 𝐑𝐧𝐜 (RMS=2.82 mm)

Nearest-Circulant symmetry : SIS18 x-plane
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∆𝑥𝐷 𝑠 = 𝐷 𝑠
∆𝑝

𝑝

Δ𝑥 = ∆𝑥𝑐𝑜 + ∆𝑥𝐷 𝑠

Mismatch between RF frequency and the 
dipole field 

an attempt to correct it can saturate the 
corrector magnets. 

MADX simulation for SIS18
Last two modes of original ORM and its Circulant approximation 

Measured closed orbit for various values of 
∆𝑝

𝑝

Coupling of dispersion 
to last two modes of 
original  ORM and its 
nearest-Circulant 
approximation. 
Dispersion couples to 
one mode only for 
Circulant ORM. 

𝛉 = 𝐕𝐓𝐒−𝟏𝐔 ∆𝒙

Ignoring the dispersion induced orbit shift at SIS18
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 Proportional Integral (PI) controller (Simple controller) 
 Can be implemented with least knowledge of the 

system
 Tuning of gains according to the application  (trial and 

error)
 Easy to implement on hardware
 Widely used at synchrotrons.
 A stable controller can destabilize the system

𝑑

𝑑

𝐺(𝑠)(𝑘𝑝 +
𝑘𝑖

𝑠
)

∗ 𝑹−𝟏
−

+

+𝑢𝑒
𝑧

Controller types used in COFB : temporal domain

𝑟(𝑠)

Inverse controller (ideal controller)  
Requires the exact knowledge of the system

𝐺(𝑠)𝐺(𝑠)−1
+𝑢

𝑧𝑟(𝑠)

Real systems have delays and model discrepancies. 

𝑑

𝐺(𝑠)𝑃𝐼

−

+

+𝑢𝑒 𝑧𝑟(𝑠)

 Smith predictor with classical (PI) controller
 Tuning the controller assuming no delay
 Can be implemented with least knowledge of the system

෨𝐺(𝑠)𝑒−𝑠𝜏

+ −

 Model is included later in order to compensate pure delays

Latest implementation at Diamond Light Source is a 
blend of classical smith predictor and inverse controller
Internal model controller (IMC)
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Internal model controller
 System identification provides the predictions of plant behaviour :  Transfer function of the model,  monitor and 

actuator dynamics and latency.

 This system is one way to explicitly address the significant latency as found in digital systems
 If G(s) is stable, a stable Q(s) will ensure internal stability in time domain
 Solution for a simple 1-pole low pass model is straight forward and feature three parameters: latency, bandwidth 

and gain
 Works for non-linear systems if their difference can be approximated by linear

𝑄 𝑠 ≅ ෨𝐺(𝑠)−1

d(s)

෨𝐺(𝑠) = 𝑒−𝑒𝜏
𝑠

𝑠 + 𝜔𝑐
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Sensitivity to temporal delay (disturbance to output and 𝝎𝒄 = 𝟖𝟓𝟎𝑯𝒛)
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Corrector settings

First iteration residual

nth iteration residual (n costs the bandwidth)

Ѳ = 𝐑′−1∆𝑧0
𝑟1 = ∆𝑧0 − 𝐑Ѳ

𝑟1 = (𝐈 − 𝐑𝐑′−1)∆𝑧0

𝑟𝑛 = (𝐈 − 𝐑𝐑′−1)𝑛∆𝑧0

Spatial sensitivity function 𝐒 = (𝐈 − 𝐑𝐑′−1)

𝐒 = 𝐏𝚲𝐒𝐏
−𝟏

𝑟𝑛 = (𝐏𝚲𝐒𝐏
−𝟏)𝒏∆𝑧0

𝑟𝑛 = 𝐏(𝚲𝐒)
𝒏𝐏−𝟏∆𝑧0

λ𝑘 ≈ (1 − λ𝑹,𝒌λ
−𝟏

𝑹′,𝒌)

Correctabilityλ𝑘 < 1

λ𝑘 = 1

λ𝑘 > 1

No correction

Instability

Characterizing the effect of spatial model mismatch

Multiple applications Bending magnets 

Focusing magnets defocusing magnets 

triplet focusing magnet 

SIS18 cell

triplet doublet 
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Conclusion: 
 In y-plane the effect of model 

mismatch can be ignored
 In x-plane, closed orbit will not be instable even for using 

ORM of injection settings at extraction energy. 
 Only 2-3 ORMs might be needed over the entire ramp in 

x-plane

4/9/2019

𝐑

𝐑′−1

On- ramp model change in SIS18

𝐒 = (𝐈 − 𝐑𝐑′−1)

𝐒 = 𝐏𝚲𝐒𝐏
−𝟏

λ𝑚𝑎𝑥 𝐨𝐟 𝐒

varies over 
the ramp

First iteration residual calculated in MADX
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Sensitivity to spatial model mismatch at SIS18 (disturbance to output)

Maximum model mismatch 
over the ramp

Approximated delay 
of the systems

With the approximated delay of  𝜏 = 200𝜇𝑠 and model mismatch up to λ𝑚𝑎𝑥 = 0.5
Orbit correction up to 300 Hz was expected in SIS18 COFB
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First test of COFB system for the on-ramp orbit correction

4/9/2019

Orbit correction over the entire ramp 
using the ORM of injection settings 

300 Hz

600 Hz
450 Hz 900 Hz

750 Hz

Dispersion induced 
hump

BPM02

BPM02
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Summary
 Closed orbit feedback system has is an integral part of synchrotron operations. 

 Light sources and hadron machines have similarities and differences  in requirements.

 Harmonic analysis and Singular value decomposition are two methods of orbit correction. SVD being more popular. 

 DFT based diagonalization and inversion of the ORM can replace SVD in case of Circulant symmetry and provides 

more physical interpretation of the mode-space. 

 Odd position of BPMs and correctors can loss of  Circulant symmetry that can be explored by the nearest-Circulant 

approximation. 

 Internal model controller design is replacing the classical controllers in COFB design and covers  the temporal 

features like latency, bandwidth and gain more efficiently than classical controller.

 The effect of spatial model mismatch is investigated particularly for the on-ramp orbit correction in SIS18 and is 

found to decrease the achievable bandwidth of the closed loop.  

 The first results of the on-ramp orbit correction at SIS18 synchrotron are presented. 

Thanks


