State of the art closed orbit feedback system

Outline

- Perturbed closed orbit : (examples)
- Srief comparison for Hadron Machines and Light Sources : motivation
- Components and key design players : orbit correction methods
- Symmetry exploitation
- 💠 Controller types
- Spatial model mismatch
- Closed orbit feedback system at SIS18 : results of first test
- 🔅 Summary

2nd ARIES annual meeting, Hotel Mercure Korona Budapest, Hungry

Closed orbit perturbation (examples)

ARIES workshop on Next Generation Beam Position Acquisition and Feedback Systems

- I unique platform for the interaction of <u>COFB community</u> from <u>light sources</u> and <u>hadron synchrotrons</u>.
- Demands, achievements and challenges were discussed and compared for both kind of synchrotrons.
- A possibility of transfer of knowledge from light sources to hadron machines for fast orbit feedback systems.

2nd ARIES annual meeting, Hotel Mercure Korona Budapest, Hungry

Comparison for Hadron Machines and Light Sources : motivation

Parameter	Light sources	SIS18 (example of Hadron machines)
Stability criteria (vertical plane)	Less than 1 μm (10% of beam size ~ 10 μm)	Less than 1 mm
Bandwidth	~ 250 Hz	Up to 900 Hz
On-ramp orbit correction	Not needed	Required (also at LHC)
Sources	Mechanical vibrations (<i>water cooling pumps</i>) /power supply ripples	Power supply ripples / Cycle to cycle hysteresis
Reaction time	Fractions of seconds	< 1 ms
Lattice	Fixed lattice settings	Lattice settings changes
Flexibility of operations	Electron beams, Fixed energies Almost fixed intensities	Protons to heavy ions, Variable beam intensities, Variable beam energies
BPM failure/malfucntion	Less probability(?)	More probability due to high radiation
Beta beating	Lattice model more understood	Variable optics
	1	5

2nd ARIES annual meeting, Hotel Mercure Korona Budapest, Hungry

Simple closed orbit feedback system

Orbit correction methods : Harmonic analysis

$$y_c(s) = \theta \frac{\sqrt{\beta(s_0)\beta(s)}}{2\sin(\pi Q_y)} \cos(|\mu(s) - \mu_{s0}| - \pi Q_y)$$

Perturbed orbit can be Fourier expanded

Modes to be removed (corrected) are selected before-hand and measured orbit is fitted over corresponding mode e.g. modes around tune frequency.

$$y_i = \sum_{k=1}^n (a_k \cos k\varphi + b_k \sin k\varphi)$$

Corrector strengths are proportional to the Fourier coefficients

4/9/26

Mode switching is possible because of separate channels for each mode

Fitting for each mode is mathematically complicated procedure

Reference: L.H.Yu et al. "Real time harmonic closed orbit correction", Nucl. Instr. Meth. A, vol. 284, pp. 268–285, 1989

2nd ARIES annual meeting, Hotel Mercure Korona Budapest, Hungry

Orbit correction methods : Singular value decomposition (SVD)

Let us come back to real world!

SVD in case of spatial model uncertainties

- ✤ <u>U and V are interconnected through a phase relation</u>
- Uncertainty modeling is required in all three matrices

 $(\mathbf{I} + \Delta_{\mathbf{R}})\mathbf{R} = (\mathbf{I} + \Delta_{\mathbf{R}})\mathbf{U} (\mathbf{I} + \Delta_{\mathbf{R}})\mathbf{S} (\mathbf{I} + \Delta_{\mathbf{R}})\mathbf{V}$

Over the ramp, updating of all three matrices required

Loss of physical interpretation of modes (SVD is a numerical technique)

$$\sigma_f = \frac{1}{2\pi} \frac{2Q}{Q^2 - f^2}$$

Reference: S. Gayadeen, "Synchrotron Electron Beam Control", Ph.D. thesis, St. Hugh's College, University of Oxford, UK, 2014.

2nd ARIES annual meeting, Hotel Mercure Korona Budapest, Hungry

$$\begin{bmatrix} R_{11} & \cdots & R_{1n} \\ \vdots & \ddots & \vdots \\ R_{m1} & \cdots & R_{mn} \end{bmatrix} = \begin{bmatrix} U_{11} & \cdots & U_{1m} \\ \vdots & \ddots & \vdots \\ U_{m1} & \cdots & U_{mm} \end{bmatrix} \begin{bmatrix} s_1 & \cdots & 0 \\ \vdots & s_2 & \vdots \\ 0 & \cdots & s_n \end{bmatrix} \begin{bmatrix} V_{11} & \cdots & V_{1n} \\ \vdots & \ddots & \vdots \\ V_{n1} & \cdots & V_{nn} \end{bmatrix}$$

S.H. Mirza

Tikhonov regularization (idea implemented at DLS)

- "Calming down" higher modes, but not eliminating
- Replaces inversion of singular values with

$$\tilde{s}_n = \frac{s_n}{s_n^2 + \mu^2}$$

After multiple applications, the result will still be a fully corrected orbit

2nd ARIES annual meeting, Hotel Mercure Korona Budapest, Hungry

S.H. Mirza

Symmetry exploitation in SIS 18 vertical ORM

$$\beta_{bpm1} = \beta_{bpm2} = \beta_{bpm3} \dots \dots = \beta_{bpm12}$$

$$\beta_{corr1} = \beta_{corr2} = \beta_{corr3} \dots \dots = \beta_{corr12}$$

 $\Delta \mu_{bpm} = constant$

 $\Delta \mu_{corr} = constant$

$$R = \begin{bmatrix} R_1 & R_2 & R_3 & R_4 & \cdots & R_n \\ R_n & R_1 & R_2 & R_3 & \cdots & R_{n-1} \\ R_{n-1} & R_n & R_1 & R_2 & \cdots & R_{n-2} \\ R_{n-2} & R_{n-1} & R_n & R_1 & \cdots & R_{n-3} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ R_2 & R_3 & R_4 & R_5 & \cdots & R_1 \end{bmatrix}$$

Each row is cyclic shift of previous row

RIES

4/9/2019

2nd ARIES annual meeting, Hotel Mercure Korona Budapest, Hungry

Diagonalization of a Circulant matrix

$$R = \begin{bmatrix} R_{1} & R_{2} & R_{3} & R_{4} & \cdots & R_{n} \\ R_{n} & R_{1} & R_{2} & R_{3} & \cdots & R_{n-1} \\ R_{n-1} & R_{n} & R_{1} & R_{2} & \cdots & R_{n-2} \\ R_{n-2} & R_{n-1} & R_{n} & R_{1} & \cdots & R_{n-3} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ R_{2} & R_{3} & R_{4} & R_{5} & \cdots & R_{1} \end{bmatrix}$$

$$\sigma_{k} = \sigma_{rk} + j \sigma_{ik} = \sum_{i}^{n-1} R_{n} e^{-j2\pi ki/n}$$

$$R = \begin{bmatrix} F_{11} & \cdots & F_{1m} \\ \vdots & \ddots & \vdots \\ F_{m1} & \cdots & F_{mm} \end{bmatrix} \begin{bmatrix} \sigma_{1} & \cdots & 0 \\ \vdots & \sigma_{2} & \vdots \\ 0 & \cdots & \sigma_{n} \end{bmatrix} \begin{bmatrix} F_{11} & \cdots & F_{1n} \\ \vdots & \ddots & \vdots \\ F_{n1} & \cdots & F_{nn} \end{bmatrix}$$

$$F_{k} = F_{kc} + jF_{ks} \qquad F_{ks} = \sin\left(\frac{2\pi km}{n} + \varphi_{k}\right)$$
2nd ARIES annual meeting, Hotel Mercure Korona Budapest, Hungry

Inverse is straightforward $R^{-1} = F^* H^{-1} F$ $H^{-1} = \text{diag}(\frac{1}{\sigma_k}) , k=1...n$

Equivalence of DFT and SVD

Nearest-Circulant symmetry : SIS18 x-plane

S.H. Mirza

2nd ARIES annual meeting, Hotel Mercure Korona Budapest, Hungry

4/9/2019

Ignoring the dispersion induced orbit shift at SIS18

Controller types used in COFB : temporal domain

- Proportional Integral (PI) controller (Simple controller)
- Can be implemented with least knowledge of the system
- Tuning of gains according to the application (trial and error)
- Easy to implement on hardware
- Widely used at synchrotrons.
- ✤ A stable controller can destabilize the system

$$\xrightarrow{r(s)} \stackrel{e}{\longleftrightarrow} \xrightarrow{(kp + \frac{ki}{s})} \xrightarrow{u} G(s)$$

Inverse controller (ideal controller) Requires the exact knowledge of the system

Real systems have delays and model discrepancies.

- Smith predictor with classical (PI) controller
- Tuning the controller assuming no delay
- Can be implemented with least knowledge of the system

Model is included later in order to compensate pure delays

Latest implementation at Diamond Light Source is a blend of classical smith predictor and inverse controller Internal model controller (IMC)

2nd ARIES annual meeting, Hotel Mercure Korona Budapest, Hungry

Internal model controller

System identification provides the predictions of plant behaviour : Transfer function of the model, monitor and actuator dynamics and latency.

- This system is one way to explicitly address the significant latency as found in digital systems
- If G(s) is stable, a stable Q(s) will ensure internal stability in time domain
- Solution for a simple 1-pole low pass model is straight forward and feature three parameters: latency, bandwidth and gain
- Works for non-linear systems if their difference can be approximated by linear

2nd ARIES annual meeting, Hotel Mercure Korona Budapest, Hungry

Sensitivity to temporal delay (disturbance to output and $\omega_c = 850Hz$)

Characterizing the effect of spatial model mismatch

On- ramp model change in SIS18

2nd ARIES annual meeting, Hotel Mercure Korona Budapest, Hungry

Sensitivity to spatial model mismatch at SIS18 (disturbance to output)

With the approximated delay of $\tau = 200 \mu s$ and model mismatch up to $\lambda_{max} = 0.5$ Orbit correction up to 300 Hz was expected in SIS18 COFB

2nd ARIES annual meeting, Hotel Mercure Korona Budapest, Hungry

First test of COFB system for the on-ramp orbit correction

Summary

- Closed orbit feedback system has is an integral part of synchrotron operations.
- Light sources and hadron machines have similarities and differences in requirements.
- Harmonic analysis and Singular value decomposition are two methods of orbit correction. SVD being more popular.
- DFT based diagonalization and inversion of the ORM can replace SVD in case of Circulant symmetry and provides more physical interpretation of the mode-space.
- Odd position of BPMs and correctors can loss of Circulant symmetry that can be explored by the nearest-Circulant approximation.
- Internal model controller design is replacing the classical controllers in COFB design and covers the temporal features like latency, bandwidth and gain more efficiently than classical controller.
- The effect of spatial model mismatch is investigated particularly for the on-ramp orbit correction in SIS18 and is found to decrease the achievable bandwidth of the closed loop.
- The first results of the on-ramp orbit correction at SIS18 synchrotron are presented.

2nd ARIES annual meeting, Hotel Mercure Korona Budapest, Hungry