

WP11: electron and proton beam testing ARIES annual meeting, BUDAPEST 08 - 11 April 2019

J. Schwindling / CEA Paris - Saclay

Thanks to R. Ruprecht (KIT), U. Dorda (DESY), A. Gleeson (STFC)

ARIES is co-funded by the European Commission Grant Agreement number 73087

Facilities in WP11

leeland	CC (page)		
Sweden Finland	Facility	Part	(Foreseen) characteristics
Estonia Batic Sea Latvi	KARA	е	0.5 – 2.5 GeV, bunch length 50 down to few ps
United Kingdom Ireland	FLUTE	е	41 MeV, 1 → 300 fs, 10 Hz
11.5: VELA Netherlands Benjolum	IPHI	р	3 MeV, peak current ~ 60 mA, 5% dc
11.1: ANIGA sovakia 11.3: IPHI * Erance	SINBAD	е	100 MeV, few fs, < 50 Hz
Croatia	VELA	е	6 MeV → 40 MeV, 10 → 100 Hz
Portugal Spain Tyrrhenian Sea	Greece		

• All facilities now running but SINBAD (first beams Spring 2019)

KARA: TNA in the storage ring KARA at

- 3 TNA finished + 1 ongoing + 1 in review
- 1st Example of TNA:

Turn-by-turn measurement benchmarking at KARA with the CLIC sc wiggler prototype

Measurement of tune and chromaticity of the electron beam during switching on / off the wiggler agree with the calculation using the NAFF code

 NAFF = Numerical Analysis of Fundamental Frequencies algorithm or variants of this code, a quasi-periodic approximation

ARIES WP7 uses storage ring KARA

 \checkmark Injection into negative alpha optics at 500 MeV (up to 6.8 mA) \checkmark Operation with different tunes, chromaticity and alpha

 \checkmark <u>Measured</u> injection orbit at negative alpha condition

It seems injection bump needed due to septum stray field

FLUTE at KIT

- FLUTE Karlsruhe Institute of Technology
- 1 TNA finished + 1 ongoing at Ferninfrarot Linac- und Test Experiment
- FLUTE injection section is in operation, first signals of diagnostics: Cavity BPMs, ICT, Faraday cup, profile monitors by

FLUTE at KIT

FLUTE Karlsruhe In

- Status
 - Time delay caused by fabrication defects and component failures
 - Feb 2019: first laser-synchronized electron beams in coll. with
 - RMS beam size: 1.17 mm horizontal, 1.59 mm vertical
 - Profile monitors in forward direction + energy spectrometer calibrated
- Outlook:
 - Now: increasing RF power for electron energy from 3 to 7 MeV
 - Systematic parameter studies and diagnostics of bunch profiles
 - Reducing beam size, <100 µm necessary for 2nd TNA-FLUTE
 - Finalizing preparation for experiments with split ring resonators

IPHI at CEA Saclay

IN2P3 Institut National de Physique Nucléaire et de Physique des Particules

The accelerator has been running during 4 weeks in September – October to accommodate 3 experiments including tests of the BPM + electronics from Bilbao + ESS

BPM tests at IPHI

Tight schedule, but efficient collaboration

Test/task	Test description	Priority	Check 🔹
	Investigate possible errors introduced on the measurement due to high		
High frequency response to short beam	frequency components of the beam signal.	Day1	ok
Phase and position resolution	Phase and position resolution as function of the beam current.	Day1	ok
	Test the feature for low current and real beam. Test for ESS commissioning	3	
BPM self trigger for low current beam	beam. Find the correct values.	Day1	ok
Set the correct BPM sensitivity factor for position			
measurements.	Check the correct values from Seadat simulations	Day1	ok
	Change beam current and measure the position and phase dependence		
Beam current dependence	introduced by the measurement system.	Day2	ok
Beam energy dependence	Verify how the BPM system responds as function of the energy.	Day2	not possible
	After checking the signal amplitude at 352 and 704 MHz harmonics, check		
Measurements at different frequencies	the response to both harmonics.	Day3	ok
Measurements at 352 MHz	Repeat measurements for the 352 MHz harmonics.	Day3	ok
	Short, 50 Ohms and open configuration. Measure position and phase		
	resolution. Analyze the raw data spectrum and the oscilloscope time		
Check the response to different matching schemes	domain measurements to the three different schemes.	Day4	not possible
Long term measurements	Acquire several measurements	Day5	ok
Current sweep for short pulse	150 us pulse length and current from 3 mA to max	Day 2	ok
Beam energy measurements	Time of Flight measurements	Day 3	ok
	Compare the bunch length at 352 and 704 MHz by measuring the 2nd and		
Bunch length measurements	3rd harmonics	Day 5	ok
	Steering experiment by changing the vertical beam position and comparing		
Correlate NMP and BPM measurements	BPM data to NPM data.	Day 4	ok

Status of IPHI

A MERIECRE A UNDUSTRIE DE LA MERIECRE A UNDUSTRIE DE LA MERIECRE A UNDUSTRIE INSTITUT NATIONAL DE PHYSIQUE NUCLÉAIRE ET DE PHYSIQUE DES PARTICULES

- These experiments were performed at low duty cycle (at most 0.3%)
- After a very smooth RF conditioning, the beam duty cycle was increased to 4% on Oct. 19th

- A neutron production setup has been installed and has started operation last week @ 1 kW
- Test of the SoNDe neutron detector for ESS foreseen beg. of May (first tests in pulsed mode)

Project abstract (please write a short summary of the project and its objectives in the box below)

SoNDe is a prototype detector for neutron capable of handling high fluxes such as to be delivered by the future European Spallation Source (ESS) under construction at Lund (Sweden). This detector is made out of commercial Multi-PhotonMultiplier, with 6x6 mm² pixel size, located after a scintillator, and mounted on fast read-out electronic. For every neutron measured, the detector should give the neutron wavelength and its spatial localization.

10

SINBAD

Outside TNA, SINBAD will be used to study compression methods, inject into advanced acceleration schemes, diagnostics development, ...

rep-rate: < 50 Hz

- Gun conditioning ongoing

Electron linac

Charge: 0.5 - 20 pC

E = 100 MeV

- bunch length: few fs

SINBAD at DESY, Hamburg

transverse norm. emittance < 0.5 mm*mrad

Target arrival time jitter stability < 10 fs RMS

Linac installation progressing: spring 2019

SINBAD: status

Commissioning of the gun region has started

The installation of the linac beam line elements was continued (t.b. finished in April)

- A 4.2m long section after the linac is available for experiments (+ diagnostics downstream)
- If users want, an experimental chamber incl hexapod can be used (available starting summer 2019)

VELA: status

- Recent VELA external user programme delivered through Q4 2018 and Q1 2019
- Successfully enabled two beamtime allocations via ARIES Transnational Access scheme:
 - Micha Dehler (PSI) 5 days, Jan 2019 "Proof of principle test of THz driven deflector structures with beam"
 - Alexander Knetsch (DESY) 5 days, Feb 2019 – "Plasma afterglow attosecond metrology"
- Next available beamtime for ARIES TNA: Q4 2019 - Q1 2020

Plasma afterglow attosecond metrology

- <u>A. Knetsch¹</u>, O. Apsimon², L. Boulton^{1,3}, A. Gleeson⁵, H. Jones², G. G. Manahan³, A. Nutter³, T. Pacey⁵, L. Reid⁴, P. Scherkl³, Edward Snedden⁵, D. Ullmann³, D. Walsh⁵, L. Corner⁴, B. Hidding³
- ¹DESY ²University of Manchester ³University of Strathclyde ⁴University of Liverpool ⁵STFC Daresbury Laboratory

- Successful synchronisation and alignment of laser, electron beam and gas jet.
- First interaction of VELA electron beam with laser-ionized plasma.

THz driven deflector structures with beam

Accepted submission for IPAC'19 'Proof of principle test of THz driven deflector structures', Dehler et al.

Conclusions

- A total of 10 experiments performed, with interesting measurements
 - IPHI and VELA provided first TNA since last october
 - SINBAD will start very soon, as anticipated
- Some of these experiments would not have been performed without ARIES
- Please advertise in your laboratories the use of our electrons, protons and neutrons !

Summary WP11

Facility	No. of projects	Total no. of projects Annex 1	No. of users	Total no. of users Annex 1	No. of access units	Total no. of access units Annex 1
ANKA	4	8	10	64	216	480
FLUTE	2	8	9	40	76	320
IPHI	2	12	10	72	112	1,440
SINBAD	0	9	0	36	0	630
VELA	2	14	16	56	80	336

