Causality Rules A light treatise on dispersion relations and sum rules

Vladimir Pascalutsa

Institute of Nuclear Physics \& Cluster of Excellence PRISMA, University of Mainz, Germany

Vladimir Pascalutsa

Education and Scientific Career

$1989-1993$	Undergraduate Student, Physics Department, Kiev University, Kiev, Ukraine
$1993-1994$	NUFFIC Junior Fellow, Kernfysisch Versneller Instituut, University of Groningen, Netherlands
$1994-1998$	PhD researcher (OIO), Institute for Theoretical Physics, University of Utrecht, Netherlands
$1998-1999$	Postdoctoral Researcher, NIKHEF, Amsterdam, Netherlands
$1999-2001$	Fellow of the Australian Research Council (ARC), Flinders University, Adelaide, Australia
$2001-2003$	Postdoctoral Researcher, Ohio University, Athens, Ohio, USA
$2003-2006$	Research Assistant Professor, College of William and Mary, Williamsburg, USA jointly with Thomas Jefferson Laboratory (JLab), Newport News, USA
$2006-2008$	Assistant Professor (tenure track), European Centre for Theoretical Nuclear Physics and Related Areas (ECT*), Trento, Italy
$2008-\quad$Staff Scientist (tenured), Institute for Nuclear Physics, University of Mainz, Germany	

Mainz U., Inst. Kernphys.	SENIOR	2008	
$\underline{\text { ECT. Trento }}$	JUNIOR	2006	2008
$\underline{\text { William-Mary Coll. }}$	PD	2003	2006
$\underline{\text { Jefferson Lab }}$	PD	2003	2006
$\underline{\text { Ohio U. }}$	PD	2001	2003
$\underline{\text { Flinders U. }}$	PD	1999	1999
$\underline{\text { NIKHEF. Amsterdam }}$	PD	1998	1998
$\underline{\text { Utrecht U. }}$	PHD	1994	1999
$\underline{\text { Taras Shevchenko U. }}$	UG		2001

Lecture 1

Standard Model

Electroweak
 QCD

QCD coupling

For $Q^{2} \rightarrow \infty, \alpha_{s} \rightarrow 0$:asymptotic freedom

QCD coupling

For $Q^{2} \rightarrow \infty, \alpha_{s} \rightarrow 0$:asymptotic freedom

QCD coupling

For $Q^{2} \rightarrow \infty, \alpha_{s} \rightarrow 0$:asymptotic freedom
For $Q \sim \Lambda_{Q C D}$ non-perturbative phenomena:
color confinement,
spontaneous chiral symmetry breaking,
generation of nucleon mass, ...

QCD coupling

For $Q^{2} \rightarrow \infty, \alpha_{s} \rightarrow 0$:asymptotic freedom
For $Q \sim \Lambda_{Q C D}$ non-perturbative phenomena: color confinement, spontaneous chiral symmetry breaking, generation of nucleon mass, ...

QFTs of low-energy QCD

I. Lattice QCD

2. Chiral effective-field theory (ChEFT) [Weinberg (1979), Gasser \& Leutwyler (1984, 85)]

3. Dispersive Methods (these lectures)

General constraints:

causality, unitarity, symmetries, low-energy theorems

3. Dispersive Methods (these lectures)

General constraints:

causality, unitarity, symmetries,

 low-energy theorems$$
\begin{aligned}
& f(w)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z) d z}{z-w} \\
& \text { for any interior pt. } \omega \text { of } C
\end{aligned}
$$

3. Dispersive Methods (these lectures)

General constraints:

causality,
unitarity, symmetries,
low-energy theorems

$$
f(w)=\frac{1}{2 \pi i} \oint_{c} \frac{f(z) d z}{z-w}
$$

for any interior pt. ω of C

Timely applications

Timely applications

Proton radius puzzle

[2] \longmapsto Hydrogen spectroscopy

$$
\text { [2] } \longmapsto \text { CODATA (2010) }
$$

[1] J. C. Bernauer et al., Phys. Rev. Lett. 105, 242001 (2010). [2] P. J. Mohr, et al., Rev. Mod. Phys. 84, 1527 (2012).
[3] R. Pohl, A. Antognini et al., Nature 466, 213 (2010).
[4] A. Antognini et al., Science 339, 417 (2013).

7б discrepancy

$$
\left[R_{E}^{\mu \mathrm{H}}=0.84087(39) \mathrm{fm}\right]<\left[R_{E}^{\text {CODATA 2010 }}=0.8775(51) \mathrm{fm}\right]
$$

Muon anomaly

INTERNATIONAL WORKSHOP

HADRONIC CONTRIBUTIONS TO NEW PHYSICS SEARCHES

Puerto de la Cruz, Tenerife, Spain
September 25-30, 2016

Hotel Las Aguilas

38400 Puerto de la Cruz, Tenerife

SUBTOPICS

Hadronic inputs for direct searches of Dark Matter
Flavour transitions of light hadrons, B-decays
Muon g-2
Proton radius puzzle

ORGANISED BY
Jorge Martin Camalich (CERN)
Vladimir Pascalutsa (University of Mainz)

Proton structure in hydrogen finite-size effect

$$
\begin{aligned}
& \delta V^{(1 \gamma)}=-\frac{4 \pi \alpha}{\vec{q}^{2}}\left[G_{E}\left(-\vec{q}^{2}\right)-1\right]=\frac{2}{3} \pi \alpha r_{E}^{2}+O\left(\vec{q}^{2}\right) \\
& \Delta E_{n l}^{(\mathrm{FS})}=\langle n l m| \delta V^{(1 \gamma)}|n l m\rangle=\delta_{l 0} \frac{2}{3} \pi \alpha r_{E}^{2} \frac{\alpha^{3} m_{r}^{3}}{\pi n^{3}}+O\left(\alpha^{5}\right) \\
& \begin{array}{c}
\text { wave function } \\
\text { at origin }
\end{array}
\end{aligned}
$$

Normal vs. muonic hydrogen

Electron

Muon

Fig. 1.1. Hydrogen energy levels

Fig. 1.1. Hydrogen energy levels

Vacuum polarization

$$
\Pi^{\mu \nu}(q)=\left(q^{2} \eta^{\mu \nu}-q^{\mu} q^{\nu}\right) \Pi\left(q^{2}\right)
$$

(a)

$$
V_{C}(r)=\int \frac{d^{3} q}{(2 \pi)^{3}} e^{i \vec{q} \cdot \vec{r}} \frac{e_{1} e_{2}}{\vec{q}^{2}}=\frac{e_{1} e_{2}}{4 \pi r}=-\frac{\alpha}{r}
$$

$$
V_{C}(r)=\int \frac{d^{3} q}{(2 \pi)^{3}} e^{i \vec{q} \cdot \vec{r}} \frac{e_{1} e_{2}}{\vec{q}^{2}}=\frac{e_{1} e_{2}}{4 \pi r}=-\frac{\alpha}{r}
$$

$$
\begin{array}{r}
V_{C}(r)=\int \frac{d^{3} q}{(2 \pi)^{3}} e^{i \vec{q} \cdot \vec{r}} \frac{e_{1} e_{2}}{\vec{q}^{2}}=\frac{e_{1} e_{2}}{4 \pi r}=-\frac{\alpha}{r} \\
\delta V_{C}^{(\mathrm{V.P.})}(r)=\int \frac{d^{3} q}{(2 \pi)^{3}} e^{i \vec{q} \cdot \vec{r}} \frac{e_{1} e_{2}}{\vec{q}^{2}} \Pi\left(-\vec{q}^{2}\right)=\int \frac{d^{3} q}{(2 \pi)^{3}} e^{i \vec{q} \cdot \vec{r}} \frac{e_{1} e_{2}}{\vec{q}^{2}} \frac{1}{\pi} \int_{0}^{\infty} d t \frac{\operatorname{Im} \Pi(t)}{t+\vec{q}^{2}} \\
=\frac{1}{\pi} \int_{0}^{\infty} d t \frac{\operatorname{Im} \Pi(t)}{t} \frac{e_{1} e_{2}}{4 \pi r}-\frac{1}{\pi} \int_{0}^{\infty} d t \frac{\operatorname{Im} \Pi(t)}{t} \frac{e_{1} e_{2}}{4 \pi r} e^{-r \sqrt{t}} \\
=V_{C}^{(\text {renorm. })}+\frac{\alpha}{r} \frac{1}{\pi} \int_{0}^{\infty} d t \frac{\operatorname{Im} \Pi(t)}{t} e^{-r \sqrt{t}}
\end{array}
$$

$$
\begin{aligned}
& V_{C}(r)=\int \frac{d^{3} q}{(2 \pi)^{3}} e^{i \vec{q} \cdot \vec{r}} \frac{e_{1} e_{2}}{\vec{q}^{2}}=\frac{e_{1} e_{2}}{4 \pi r}=-\frac{\alpha}{r}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\pi} \int_{0}^{\infty} d t \frac{\operatorname{Im} \Pi(t)}{t} \frac{e_{1} e_{2}}{4 \pi r}-\frac{1}{\pi} \int_{0}^{\infty} d t \frac{\operatorname{Im} \Pi(t)}{t} \frac{e_{1} e_{2}}{4 \pi r} e^{-r \sqrt{t}} \\
& =V_{C}^{(\text {renorm. })}+\frac{\alpha}{r} \frac{1}{\pi} \int_{0}^{\infty} d t \frac{\operatorname{Im} \Pi(t)}{t} e^{-r \sqrt{t}} \\
& \tilde{V}_{C}(r)=-\frac{\alpha}{r}\left[1-\frac{1}{\pi} \int_{0}^{\infty} d t \frac{\operatorname{Im} \Pi(t)}{t} e^{-r \sqrt{t}}\right]
\end{aligned}
$$

Modified Coulomb potential:

$$
\mathrm{QED}: \operatorname{Im} \Pi(t)=-\frac{\alpha}{3} \sqrt{1-\frac{4 m_{\ell}^{2}}{t}}\left(1+\frac{2 m_{\ell}^{2}}{t}\right)+O\left(\alpha^{2}\right)
$$

$$
\mathrm{QED}: \operatorname{Im} \Pi(t)=-\frac{\alpha}{3} \sqrt{1-\frac{4 m_{\ell}^{2}}{t}}\left(1+\frac{2 m_{\ell}^{2}}{t}\right)+O\left(\alpha^{2}\right)
$$

Exercise:

from $\Pi^{\mu \nu}(q)=i e^{2} \int \frac{\mathrm{~d}^{4} k}{(2 \pi)^{4}} \operatorname{tr}\left[\gamma^{\mu} \frac{\not k+m}{k^{2}-m^{2}} \nu^{\nu} \frac{\not q+\nmid+m}{(q+k)^{2}-m^{2}}\right]$
show

1) $\Pi^{\mu \nu}(q)=\left(q^{2} \eta^{\mu \nu}-q^{\mu} q^{\nu}\right) \Pi\left(q^{2}\right)$
2) $\Pi\left(q^{2}\right)=\frac{q^{2}}{\pi} \int_{4 m^{2}}^{\infty} d t \frac{\operatorname{Im} \Pi(t)}{t\left(t-q^{2}\right)}$
