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Lecture 1



Standard Model 
Electroweak   QCD
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       color confinement, 
       spontaneous chiral symmetry breaking,
       generation of nucleon mass, ...

Q ⇠ ⇤QCD

For                            : asymptotic freedom



QCD coupling

For                    non-perturbative phenomena: 
       color confinement, 
       spontaneous chiral symmetry breaking,
       generation of nucleon mass, ...

Q ⇠ ⇤QCD

For                            : asymptotic freedom



1. Lattice QCD 2. Chiral effective-field theory (ChEFT) 
  [Weinberg (1979), Gasser & Leutwyler (1984, 85)]

QFTs of low-energy QCD



3. Dispersive Methods (these lectures)

General constraints:
causality, 
unitarity, 

symmetries,
low-energy theorems
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respect to the imaginary axis, cf figure 2.2. It is therefore convenient to do the above
analysis in the complex plane of ω γ= +z i2 . Then, the situation is reduced to the
one we have covered, and only at the end do we need to change the variables from ω
to ω2, and analogously for the integration variable:ζ ζ→ 2. The resulting dispersion
relations for the even or odd function are, respectively:

⨏ ⨏ω π ζ ζ ζ
ζ ω ω ω

π ζ ζ
ζ ω= − = −ω ω

∞ ∞

f d
f

f d
f

Re ( )
2 Im ( )

, Re ( )
2 Im ( )

. (2.11)even 2 2 odd 2 2
0 0

This property usually arises when ωf ( ) is a scattering amplitude describing an
elastic scattering of light on some target, e.g. an electron (Compton scattering), or
another photon (light-by-light scattering). Such a process should be invariant under
an interchange of the incident and outgoing photon, hence the crossing symmetry.
Further discussion can be found in chapters 4 and 6.

2.4 Unitarity
Dispersion relations are most useful when the imaginary part is expressed in terms of
observable quantities, usually photoabsorption cross sections. Unitarity, or con-
servation of probability, often facilitates such relations. For example, in the case of f
describing the amplitude of forward Compton scattering off a target, unitarity
results in the optical theorem:

ω ω σ ω
π=fIm ( )
( )

4
, (2.12)

with σ ω( ) the total cross section of photoabsorption by that target. Combining this
with crossing symmetry leads (for an even function) to:

Figure 2.2. Analytic structure of a crossing invariant amplitude in the complex plane. The branch cuts are
symmetric with respect to the imaginary axis.
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Vladimir Pascalutsa — Nucleon at Very Low Q — NStar 2015 — Osaka, May 25-2, 2015

Proton radius puzzle

5

[RCODATA 2010

E = 0.8775(51) fm]

7σ discrepancy

[1]  J. C. Bernauer et al., Phys. Rev. Lett. 105, 242001 (2010). 
[2]  P. J. Mohr, et al., Rev. Mod. Phys. 84, 1527 (2012). 
[3]  R. Pohl, A. Antognini et al., Nature 466, 213 (2010). 
[4]  A. Antognini et al., Science 339, 417 (2013).

[1]

[2]

[3,4]

[RµH
E = 0.84087(39) fm]

[2]

Then came a problem
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The proton radius puzzle

Measure the 2S − 2P splitting in µp

↓

determine the proton rms radius rp
(10× better )

But large discrepancy observed:
• 4σ from H spectroscopy value
• 6σ from e-proton scattering value

A. Antognini
MPQ, Garching, Germany
ETH, Zurich, Switzerland

A. Antognini, PANIC11, MIT, Cambridge, USA 25.07.2011 – p.1

Thursday, March 14, 13



Muon  
anomaly
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Proton structure in hydrogen—
finite-size effect
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Normal vs. muonic hydrogen



2 1 Theoretical Approaches to the Energy Levels of Loosely Bound Systems

Fig. 1.1. Hydrogen energy levels

Straightforward calculation of the characteristic values of the velocity,
Coulomb potential and kinetic energy in the stationary states gives

⟨n|v2|n⟩ =
〈

n

∣∣∣∣
p2

m2

∣∣∣∣n
〉

=
(Zα)2

n2
, (1.2)

〈
n

∣∣∣∣
Zα

r

∣∣∣∣n
〉

=
m(Zα)2

n2
,

〈
n

∣∣∣∣
p2

2m

∣∣∣∣n
〉

=
m(Zα)2

2n2
.

We see that due to the smallness of the fine structure constant α a one-
electron atom is a loosely bound nonrelativistic system2 and all relativistic
effects may be treated as perturbations. There are three characteristic scales

2 We are interested only in low-Z atoms. High-Z atoms cannot be treated as non-
relativistic systems, since an expansion in Zα is problematic.

1 neV ' 1.5 MHz
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More on n=2 for muonic hydrogen:
Lamb shift dominated by vacuum polarization, drops 
2S state by a lot 

First published data was 
for  2S F=1 to 2P3/2 F=2 
level       (F is total 
angular momentum)
HFS enters a bit since 
2S F=1 displaced up by 
1/4 of HFS

206 meV

F=2
F=1

F=1
F=0

F=1

F=0

finite size effect
3.7 meV HFS  23 meV

FS 8.4 meV
2P3/2 

2P1/2

2S1/2

Thursday, March 14, 13



Vacuum polarization

⇧µ⌫(q) = (q2⌘µ⌫ � qµq⌫)⇧(q2)

qµ⇧
µ⌫(q) = 0 = q⌫⇧
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⇧µ⌫(q) = (q2⌘µ⌫ � qµq⌫)⇧(q2)
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Chiral corrections to muonic hydrogen Lamb shift

7.1 Potential in terms scattering amplitude

Take for example the vacuum polarisation,

⇧µ⌫(q) = ie2
Z

d4k
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where
M2

e↵
= m2 � x(1� x)q2 � i0+ (7-3)

is the effective mass.
To evaluate the 4-momentum integrals J1 and J2 we use the dimensional regularisation, and hence

the trace need also be computed for arbitrary dimension d = 4� 2✏, using

�↵�↵ = d, �↵�µ�↵ = (2g↵µ � �µ�↵)�↵ = (2� d)�µ,

tr[�↵�µ] = 1
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We thus have
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Exercise: 

from 

show 
1) 

2)

⇧µ⌫(q) = (q2⌘µ⌫ � qµq⌫)⇧(q2)

Π(q2) =
q2

π ∫
∞

4m2

dt
Im Π(t)
t(t − q2)


