

Causality Rules A light treatise on dispersion relations and sum rules

https://doi.org/10.1088/978-1-6817-4919-8

Vladimir Pascalutsa

Institute of Nuclear Physics & Cluster of Excellence PRISMA, University of Mainz, Germany

Vladimir Pascalutsa

Education and Scientific Career

1989 – 1993	Undergraduate Student, Physics Department, Kiev University, Kiev, Ukraine		
1993 – 1994	<i>NUFFIC Junior Fellow</i> , Kernfysisch Versneller Instituut, University of Groningen, Netherlands		
1994 – 1998	<i>PhD researcher (OIO)</i> , Institute for Theoretical Physics, University of Utrecht, Netherlands		
1998 – 1999	Postdoctoral Researcher, NIKHEF, Amsterdam, Netherlands		
1999 – 2001	Fellow of the Australian Research Council (ARC), Flinders University, Adelaide, Australia		
2001 – 2003	Postdoctoral Researcher, Ohio University, Athens, Ohio, USA		
2003 – 2006	Research Assistant Professor, College of William and Mary, Williamsburg, USA		
	jointly with Thomas Jefferson Laboratory (JLab), Newport News, USA		
2006 – 2008	Assistant Professor (tenure track), European Centre for Theoretical Nuclear Physics and Related Areas (ECT*), Trento, Italy		
2008 –	<i>Staff Scientist (tenured)</i> , Institute for Nuclear Physics, University of Mainz, Germany		

Mainz U., Inst. Kernphys.	SENIOR	2008	
ECT, Trento	JUNIOR	2006	2008
William-Mary Coll.	PD	2003	2006
Jefferson Lab	PD	2003	2006
<u>Ohio U.</u>	PD	2001	2003
Flinders U.	PD	1999	2001
NIKHEF, Amsterdam	PD	1998	1999
Utrecht U.	PHD	1994	1998
Taras Shevchenko U.	UG	1989	1994

Lecture 1

For $Q^2 \rightarrow \infty, \, \alpha_s \rightarrow 0$: asymptotic freedom

For $Q^2 \rightarrow \infty, \alpha_s \rightarrow 0$: asymptotic freedom

For $Q^2 \rightarrow \infty, \alpha_s \rightarrow 0$: asymptotic freedom

For $Q \sim \Lambda_{QCD}$ non-perturbative phenomena: color confinement, spontaneous chiral symmetry breaking, generation of nucleon mass, ...

For $Q^2 \rightarrow \infty, \, \alpha_s \rightarrow 0$: asymptotic freedom

For $Q \sim \Lambda_{QCD}$ non-perturbative phenomena: color confinement, spontaneous chiral symmetry breaking, generation of nucleon mass, ...

QFTs of low-energy QCD

I. Lattice QCD

2. Chiral effective-field theory (ChEFT) [Weinberg (1979), Gasser & Leutwyler (1984, 85)]

3. Dispersive Methods (these lectures)

General constraints:

causality, unitarity, symmetries, low-energy theorems

3. Dispersive Methods (these lectures)

General constraints:

causality, unitarity, symmetries, low-energy theorems

3. Dispersive Methods (these lectures)

General constraints: causality, unitarity, symmetries, low-energy theorems

$$f(w) = \frac{1}{2\pi i} \oint_C \frac{f(z)dz}{z - w}$$

for any interior pt. w of C

Timely applications

Timely applications

7σ discrepancy

 $[R_E^{\mu H} = 0.84087(39) \,\text{fm}]$ $(R_E^{\text{CODATA 2010}} = 0.8775(51) \,\text{fm}]$

Muon anomaly

HADRONIC CONTRIBUTIONS TO NEW PHYSICS SEARCHES H62NP 2016

Puerto de la Cruz, Tenerife, Spain September 25–30, 2016

Hotel Las Aguilas C/Doctor Barajas 19, 38400 Puerto de la Cruz, Tenerife

SUBTOPICS

Hadronic inputs for direct searches of Dark Matter Flavour transitions of light hadrons, B-decays Muon g-2 Proton radius puzzle

ORGANISED BY Jorge Martin Camalich (CERN) Vladimir Pascalutsa (University of Mainz)

http://indico.cern.ch/e/HC2NP

Proton structure in hydrogenfinite-size effect

Normal vs. muonic hydrogen

 $1~{\rm neV}\simeq 1.5~{\rm MHz}$

Fig. 1.1. Hydrogen energy levels

Vacuum polarization

$$\Pi^{\mu\nu}(q) = (q^2 \eta^{\mu\nu} - q^{\mu} q^{\nu}) \Pi(q^2)$$

$$q_{\mu}\Pi^{\mu\nu}(q) = 0 = q_{\nu}\Pi^{\mu\nu}(q)$$

$$\Pi^{\mu\nu}(q) = (q^2 \eta^{\mu\nu} - q^{\mu} q^{\nu}) \Pi(q^2)$$

$$V_C(r) = \int \frac{d^3q}{(2\pi)^3} e^{i\vec{q}\cdot\vec{r}} \frac{e_1e_2}{\vec{q}^2} = \frac{e_1e_2}{4\pi r} = -\frac{\alpha}{r}$$

$$\delta V_C^{(\text{V.P.})}(r) = \int \frac{d^3 q}{(2\pi)^3} e^{i\vec{q}\cdot\vec{r}} \frac{e_1e_2}{\vec{q}^2} \Pi(-\vec{q}^2) = \int \frac{d^3 q}{(2\pi)^3} e^{i\vec{q}\cdot\vec{r}} \frac{e_1e_2}{\vec{q}^2} \frac{1}{\pi} \int_0^\infty dt \, \frac{\text{Im}\,\Pi(t)}{t + \vec{q}^2}$$
$$= \frac{1}{\pi} \int_0^\infty dt \, \frac{\text{Im}\,\Pi(t)}{t} \frac{e_1e_2}{4\pi r} - \frac{1}{\pi} \int_0^\infty dt \, \frac{\text{Im}\,\Pi(t)}{t} \frac{e_1e_2}{4\pi r} e^{-r\sqrt{t}}$$
$$= V_C^{(renorm.)} + \frac{\alpha}{r} \frac{1}{\pi} \int_0^\infty dt \, \frac{\text{Im}\,\Pi(t)}{t} e^{-r\sqrt{t}}$$

D

e-

$$V_C(r) = \int \frac{d^3q}{(2\pi)^3} e^{i\dot{q}}$$

$$) = \int \frac{d^{3}q}{(2\pi)^{3}} e^{i\vec{q}\cdot\vec{r}} \frac{e_{1}e_{2}}{\vec{q}^{2}} = \frac{e_{1}e_{2}}{4\pi r} = -\frac{\alpha}{r}$$

$$\delta V_C^{(\text{V.P.})}(r) = \int \frac{d^3 q}{(2\pi)^3} e^{i\vec{q}\cdot\vec{r}} \frac{e_1e_2}{\vec{q}^{\,2}} \Pi(-\vec{q}^{\,2}) = \int \frac{d^3 q}{(2\pi)^3} e^{i\vec{q}\cdot\vec{r}} \frac{e_1e_2}{\vec{q}^{\,2}} \frac{1}{\pi} \int_0^\infty dt \, \frac{\text{Im}\,\Pi(t)}{t + \vec{q}^{\,2}}$$
$$= \frac{1}{\pi} \int_0^\infty dt \, \frac{\text{Im}\,\Pi(t)}{t} \frac{e_1e_2}{4\pi r} - \frac{1}{\pi} \int_0^\infty dt \, \frac{\text{Im}\,\Pi(t)}{t} \frac{e_1e_2}{4\pi r} e^{-r\sqrt{t}}$$
$$= V_C^{(renorm.)} + \frac{\alpha}{r} \frac{1}{\pi} \int_0^\infty dt \, \frac{\text{Im}\,\Pi(t)}{t} e^{-r\sqrt{t}}$$

 $\begin{array}{ll} \text{Modified Coulomb} \\ \text{potential:} \end{array} \quad \tilde{V}_C(r) = -\frac{\alpha}{r} \left[1 - \frac{1}{\pi} \int\limits_0^\infty dt \, \frac{\mathrm{Im}\,\Pi(t)}{t} e^{-r\sqrt{t}} \right] \end{array}$

QED: Im
$$\Pi(t) = -\frac{\alpha}{3}\sqrt{1 - \frac{4m_{\ell}^2}{t}\left(1 + \frac{2m_{\ell}^2}{t}\right) + O(\alpha^2)}$$

QED: Im
$$\Pi(t) = -\frac{\alpha}{3}\sqrt{1 - \frac{4m_{\ell}^2}{t}} \left(1 + \frac{2m_{\ell}^2}{t}\right) + O(\alpha^2)$$

Exercise:

from
$$\Pi^{\mu\nu}(q) = ie^2 \int \frac{\mathrm{d}^4 k}{(2\pi)^4} \mathrm{tr} \left[\gamma^{\mu} \frac{k + m}{k^2 - m^2} \gamma^{\nu} \frac{q + k + m}{(q + k)^2 - m^2} \right]$$

show 1) $\Pi^{\mu\nu}(q) = (q^2 \eta^{\mu\nu} - q^{\mu} q^{\nu}) \Pi(q^2)$

2)
$$\Pi(q^2) = \frac{q^2}{\pi} \int_{4m^2}^{\infty} dt \frac{\operatorname{Im} \Pi(t)}{t(t-q^2)}$$