Properties of Nuclear Matter
Kerill Alekiscerick Bugaer
Bogolyubov ITP, Kiev, Ukraine

1. Equation of state (EoS) of nuclear matter: from Walecka model
to thermodynamically self-consistent models (1.5 hours).

2. Induced surface tension EoS for nuclear and hadronic matter and
quantum virial coefficients (1.5 hours).

3. Statistical multifragmentation model (SMM) of atomic nuclet,
its exact analytical solution and nuclear liquid-gas phase transition (1 hour).

4. Critical exponents of classical and statistical EoS (1 hour).

Truskavets, October 11, 2018



Why Nuclear Matter?

1. Since it is sufficiently simple object and can be studied at low and
intermediate energies of nuclear reactions

2. Nuclear Matter has a liquid-gas phase transition and hence it can be
used as a realistic test site to verifty the ideas on phase transition signals

in finite systems
3. Still it is located at the frontier:

superheavy elements;

vacuum e.-m. instability against e+e- production,
if total electric charge in reaction > 137;

reactions with radioactive nuclei;

neutron stars equation of state (EoS)

4. It has plenty of various applications in our life!



NM Frontiers

N-Z diagrams of the atomic nuclei
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NM Frontiers

Till now we do not know whether stability island exists there!

/—\Q The valley of sta _Im
Fq/j_/l ei with excess  the neu e of."

SN nucleons move  the valley is poorly
b, down the valley __}u’ndemhud - scientisis
N towards s ~aren't sure where the
AN ‘)I:Iriplln'e lies

decay AN wetea cementst G777 0 decay

these reactions
t well understood!



Nuclear Liquid = Compound Nucleus

mass distribution of fragments

Evaporation /fission
/ £1000 fm/c
t=0 fm/c O A+ B —= A+X liqllid
‘ E / droplet
A% 2| e
Moderate heating Qg*
p~p,

Intermediate Mass Fragment A

Po is normal nuclear density

Compound Nucleus (CN) 1s an equilibrated hot nucleus whose excitation energy
1s distributed over many microscopic d.o.f. (introduced by Niels Bohr in 1936-39)

Sequential evaporation model—Weiskopf 1937,
Statistical fission model-—Bohr-Wheeler 1939, Frenkel 1939



Nuclear Multifragmentation = No Liquid!

Nuclear break-up different mass
t=0 fm/c distribution

100 fm/c of fragments

But a few MeV A more...
A+ B — A +X

Probability (a.u.)

: Heating
Peripheral p<p, P~0

AA collision

Equilibrated source

slow expansion

Intermediate Mass Fragment A

Power-law fragment mass distribution around critical point, Y(A)~A™
Can be well understood within an equilibrium statistical approach

(Randrup&Koonin, D.H.E. Gross et al, Bondorf-Mishustin-Botvina, Hahn&Stoecker,...)



Nuclear Multifragmentation as a Phase Transition

Probability (a.u.)
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Our Major Aims

1. Study the nuclear liquid-gas PT using different approaches

2. Become familiar with mean-field approximation and
statistical models of cluster type etc



Outline of lecture 1

1. Historical introduction

2. Formal definition of grand canonical ensemble (GCE)
and L. van Hove axioms of statistical mechanics

3. Properties of heavy nuclei and nuclear matter

4. Walecka model and nuclear matter EoS

5. Phenomenological generalization of Walecka model

6. Summary



Strong Interaction Discovery

Discovery of the proton ( Rutherford 1918 )

To Yacuum Pump Nitrogen

I l Fluorescent

Screen

Netal

Cylinder .
Microscope
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Radioactive Alpha
Source Particles

shower of
hydrogen nuclei - Protons

atomic number of hydrogen is 1

14 17
a+ N —-p+3"0
[ P 3 Conclusion: proton 1s

Mp ~ 2000Me, €p = —¢€e a constituent of a nucleus

First nuclear reaction performed in a laboratory!



Strong Interaction Discovery

pump

Discovery of the neutron ( Chadwick 1932 )
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Strong Interaction Discovery
Discovery of the neutron ( Chadwick 1932 )
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unknown neutral particle = neutron
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o Be — n C
The Nobel Prize _I_ 4 _I_ 6

in Physics 1935 M, ~ lpr

James Chadwick
(1891-1974)

neutron 1s a constituent of a nucleus



Strong Interaction Discovery

Prediction of pion ()

In 1935 H. Yukawa introduced interaction
between nucleons (proton and neutron) in nucleus.
“Nucleons (protons and neutrons) are held
together by force stronger than electrostatic
repulsion of protons”

Hideki Yukawa exD(—m—r/hc
(1907-1981) U =1U, 2l T,W /he)

Nobel Prize 1949

In fact, Yukawa predicted a new particle —quanta

of strong interaction meson, with mass

_ hc . 200MeV-fm __ N
mz o g o 20006 = 100 + 200 MeV



Discovery of muons came first...

Discovery of muon: J. Street and E. Stevenson 1937

They found (in cloud chamber) penetrating cosmic ray tracks with unit
charge but mass 1n between electron and proton (Yukawa particle?).

Muons were proven not to have any nuclear interactions and to be just
heavier versions of electrons.

H. Bethe and R. Marshak suggested that the muon might be the decay
product of the particle needed in the Yukawa theory, so the search of
Yukawa particle was continued.

Later was known that p meson decays to electron and two 1nvisible
neutrinos via weak interactions (B decay): u =2 2v+e.

Particle  Electric charge ~  Mass |
(x1.6 10" C) (GeV=x 1.86 107" kg)

pbbs Who ordered

e
D 0.938

. 0 X

elementary particles by 1938




Discovery of pion
Discovery of pion (1947)

i i ; =

Fig. 1 @. PHOTOMICROGRAPH OF CENTRE OF STAR, SHOWING TRACE OF
MESQY PRODUCING DISINTEGRATION. (LEITZ 2 MM. OIL-IMMERSION
OBJECTIVE. x 500)

Cecil F. Powell

(1903-1969) details on the next slide
Nobel Prize 1950

* Detected 1in cosmic rays captured in photographic emulsion.
 Unlike muons, they do interact with nuclei.
* Charged pions eventually decay to muons:

T2 U+ V.

T+ ~2.6x 107 8s T 0~8.4x 107 1’s



Discovery of pion

First Pion

Nuclear capture of pion

v

| L Ll i | 1 r 1 1
] ] TAKD

Fig. 1 b. TEACE OF COMPLETE STAR ON SCREEN OF PROJEOTION

MICHOSCOPE, SHOWING PROJECTION OF THE THACES IN THE PLANE

OF THE EMULSICON, TRACE A 0ANNOT BE THACED WITH CERTAINTY
BEYOND THE ARROW

g. 1 &. PHOTOMICROGRAFHK OF CENTRE OF STAR, SHOWING TRACK |
ra0¥ PRODUCING DISINTEGRATION. (LEITE 2 MM. OIL-IMMERSH
OBJRCTIVE. X SUU)

*A is the new meson
*B,D,C are likely protons
*Track C goes into the page

Why A is a new meson:

electron: range too large

proton: scattering too large

muon: frequent nuclear interaction



Discovery of pion

T— event

u (estimated mass = 100-300m )
Observed by Powell, Oct. 1947



After the discovery of pion...

Elementary particles (discovered) at end of 40th

Particle Electric charge Mass
(x 1.6 10" C) (GeV=x 1.86 107 kg)

—1 0.0005
| 0.106

0 0

+1
0




After the discovery of pion more hadrons were
found!

Strange particles 1947

4+ p— A+ KO

N—p-+ 7"
O _
KO -t 47 since them come in
“V-partiCICS” pairS With V‘like
tracks

Mx ~ 1116 MeV




After the discovery of pion more hadrons
and hyper nucle1 were found!

Why they are “strange”

1. They are produced in pairs

2 The probability of a production
IS much greater, than probabili
of their decay

—-23 ¢

Murray Gell-Mann and Kazuhiro Nishijima introduced new quantum

number: “Strangeness” and concluded that “Strangeness
Sn = —1 is conserved in strong interactions
Sgo=—+1 (production) and violated in weak

interactions (decay)

ZJ‘, ZD, = . E{jj 2, ... A, ApA

hypernuclei!



NB: Hagedorn Spectrum Follows from

Veneziano Model,
K.Huang,5.Weinberg,
1970

Hadrons are built from hadrons Used in string models

Stat.Bootstrap Model,
S.Frautschi, 1971

&
M.I.T. Bag Model, >
J.Kapusta, 1981 T Hadron mass spectrum

600
Hadrons are quark-gluon bags SRS
500 F

Large Nc limit of 3+1
QCD
T. Cohen, 2009




.Hagedorn Spectrum is seen, but
not where it is supposed to be!

Consider the integral of experimental density of hadronic states:

Nex — Z@ — 11t ), N

p(m) Zé:g (m — m;) 1000 |
500 |
100
* It is exponential 50 |
for 1GeV<m<25 |
GeV! 5

) 051152253

*  What is above masses m [GeV]

of 2.5 GeV ?

K. A.Bugaev, V. K. Petrov and G. M. Zinovjeyv,

Can QCD models explain this? 0 1 e 85,2009 22002: and PRC 79 (2009)



Strong Interaction

Yukava interaction is not a fundamental one

The fundamental interaction of strongly interacting particles
is due to colored gluons, the source of color interaction are quarks

Yukava interaction is not sufficient to construct nuclei,
we need strong repulsion at very short range and
moderate range attraction



Necessary Apparatus

Microcanonical Ensemble (MCE) of N Boltzmann particles

( )
E—Z\/m2+Pi— ;U(wlawj)

\ potential energy)

N d?’wkd?’pk 5
=1 (2mh)3

1
ch(E, N, V) — ﬁ/

EXACTLY conserves energy E and number of particles N (or charge)

x_k and p K are, respectively, coordinate and momentum of particle k

Canonical Ensemble (CE) of N Boltzmann particles

Zce(T, N, V) /dEe_% ch(Ea N, V) p—

2 2 _ ) |
/ H dgil?kd3pl<; %:\/m _I_pk %U(wlawj)
(27h)3 ¥ T

conserves E on average, but number of particles N (or charge) EXACTLY



Grand Canonical Ensemble

Grandcanonical Ensemble (GCE) of Boltzmann particles

oo AN
Z eT Z.(E,N,V) =

N=0

Zge(T, b, V)

Z\/m2+pi_
J

> U (g, wj)_
l,g

o elr d°x,.d3py,
- Z /H (27h)3 P

conserves . and NN on average only!

Pressure is defined as

In[Z..(T, N, V)]

thermal p = T lim
V —o00 V
. Oln[Z..(T,N,V)]
mechanical p =T
oV
Apparently, in thermodynamic limit they should coincide

T




L. van Hove Axioms of Statistical Mechanics

A1l in the Grand Canonical Ensemble the pressure p >0 can be
only the function of V, T and pn

A2: in thermodynamic limit along the curve T=const the pressure p can be
only a monotonically decreasing function of inverse density 1/(0 p/o n) .
Exception is a phase transition region,
where p=const for T=const

A3: kinks of pressure p can exist in thermodynamic

limit only! For finite V they are transformed
into regular behavior of isotherms. 0 :

2 3 4
V'= \
Van der Waal Isothermll“/=(oago p/ a u

Maxwell's rule eliminates the oscillating behavior of the isotherm in

the phase transition zone by defining it as a certain isobar in that

ZZZZZ

Hence the Van der Waals EoS does not
considers phase transitions correctly!



Thermodynamics 1n Grand Canonical Ensemble

Other thermodynamic quantities can be found from identities:

I Law p+e=Ts+ un

op op

II Law S§=—; n=—
oT ou

II1 Law s—0,ift T —0

€ is energy demnsity (E/V), s is entropy density, n is baryonic charge density



Nuclear Matter Properties

Bethe—Weizsaecker formula for binding energy of nucleus
of Z protons and (A-Z) neutrons

(A)2—2)2 Z7 :
a1 | Q4E + corrections due to shell effects

2
Eyw = (imny+Wp)A+arA3+as

Binding energy of nucleons at =0 Wy =-16 MeV

Surface energy of spherical fragments a» = 16 = 18.5

MeV
Symmetry energy az = 100 MeV
Coulomb energy as = 0.72 MeVv  small!

Imagine a matter with 50% of protons and 50% of neutrons,
but protons have no electric charge = symmetric nuclear matter



Nuclear Matter Properties

. Normal nuclear density ng ~ 0.16 fm~ is density at the center of heavy nuclei

. At temperature T' = 0 and normal nuclear density the system pressure p is zero.

p = 0 is mechanical stability condition
. Binding energy/nucleon at T = 0 and n = ng is Wy = —16 MeV (see prev. slide)

. Incompressibility constant of normal nuclear matter is

— a9
KO p— 98—Z|T:0’ n:noe [200; 315] MeV
. Proton flow constraint (p(n) dependence at high n values)

. Hard-core radius of nucleons R,, € [0.3;0.35] fm (see later)



Proton flow constraint

P. Danielewicz et al.
Science 298, 1592 (2002)

100
) R
E
=
)
=3
& »
10 =====Formi gas
: — — Boguta
: -— Akmal
——K=300 MeV
1

1 18 2 2K 3 3K 4 45 A’

As you can see from these examples, some EoS do not obey this constraint!



Nuclear Matter Properties at T=0

EoSat T =0: | p(n) =un —e=n{u— (m-+ W((n))|

€ is energy density, W (n) is binding energy per nucleon.

From the stability condition p=0at T =0 and n = ng =

po = u(T =0,n =ng) =m+ W(n =ng) = 923 MeV




Nuclear Matter Properties at T=0

EoSat T =0: | p(n) =un —e=n{u— (m-+ W((n))|

€ is energy density, W (n) is binding energy per nucleon.

From the stability condition p=0at T =0 and n = ng =

po = u(T =0,n =ng) =m+ W(n =ng) = 923 MeV

o o dW (n
P = (m+ W) +not )
on on dn
—~—
I
Op Ou ou
———— =n— for n = ny,
ouon on

since [p— (m+ W(n))] =0 for n = ng
At normal nuclear matter wn) has an extremum!



Nuclear Matter Properties at T=0

equation of state

3
From expression for % find p and get <
~
dW(n) . C g
p=m+W(n)+n r , differentiating it = E
n
2
op _ de(n) | nd W(n) N 20
on dn dn?
n/ng
o d*W(n = nyg)
— =Ny for n = ny
on dn?
op ou d*W (n)
Ky=9 = 9ng— = | Ko =9n? .
0 on 06n T—=0, n—=ng 0 0 dn? T=0, n=ng

At normal nuclear matter wn) has a minimum!



Nuclear Matter within Walecka (6-w) model

J. D. Walecka, Annals Phys. 83, (1974) 491
Also Jonson&Teller, Duerr contributed:

constituents are nucleons and static - mesons

Lagrangian is a Lorentz scalar, then interaction one is (x =t, X, y, z)

Lin = 8o 0(X) Y)Y (X) — g0 @, (x) Y(x)y*¥(x),

scalar vector

Full Lagrangianis , — E[; y, (0" + ig,w*) — (m — ggcr)]w

+5(8,08%0 —mio?) — 00" + smiw,0" .
Euler-Lagrangian equations of motion are Coupling constants areg 6 and ¢ ®
G meson O+ m, 2o (x) = g, ¥ (x)Y(x), For point-like nucleons

=> Yukawa potential!

® meson (04 m?)w,(x)— 98,00, (x) = g, ¥
( e, )0 (x) = 3,8%w, (x) = gu Y (X)y, ¥ (x) Coupled system is

: . :
nucleons [},ﬂ (18" — gowh (X)) — (m — g U(x))] v(x) = 0. still complicated!

m is nucleon mass, m_o IS 6-meson mass, m_ is ®-meson mass



Mean-field approximation to Walecka (6-w) model

We are interested in a static uniform and isotropic matter being in the ground state
=> all spatial points and all directions are equivalent!
=> ¢ = <6> averaged value,

, _
o l=02=0n_3=0, my(o) = g (¥¥),
® 0=<m 0> averaged value 2

ms(wo) = guol¥ V),

=> for nucleons [yﬂ(i a’ —wau‘sou)— (m —g,0 )]W(«Y) = 0,

There is no explicit x-dependence
in Euler-Lagrange equation!

Effective nucleon mass is m*(c:r ) — m — £,0

Y(x) = Ylk)e '
Formal solution for nucleons
k-x=k,x" =kot —k-r. K“:k“’—gww“&o“

With nucleon 4-momentum



Walecka (6-w) model: equation for nucleons

Dirac equation:
(K — m*)W(K) — 0. where K=~,K!

Effective nucleon mass is With nucleon 4-momentum is

Paul Dirac * — _ L — L Op
(1902-1984) L (U) m 800 Kt =k wau5

Using properties of y-matrices one can find the eigenvalues of
Dirac operator

(K +m YK —m*)=KK —m*? =y, K"y, K’ —m*’

— K. Kt — x2 _
— K,MKU VHVU + }”u}’” . m*z _ KHKH _mtz | > ( I m )w(K) 0.

The standard procedure gives the eigen values for energy of

for nucleons E1T = \/kz + (m*)? + gow, ,

for antinucleons E~ = \/k2 + (m*)? — go,w, .



Walecka (6-0) model: pressure

pressure
w [ Pk 2 mean-field
T) = — _|_ — e s
p(T', 1) 3] (2np \/k2  m2 et 7-) contributions

ideal gas with m* mass Degeneracy factor vy = (2Sy + 1)(2In + 1) =4,

nucleon spin Sy = % and isospin Iy =

N | =

distribution function
—1

_ (\/ k2 + m* T u + gww()) ' i baryonic chemical
eXp + 1 ,
T potential

f+

Formally, pressure is known, but how to find the values of ¢ and ©_0 fields?



Walecka (6-0w) model: pressure

pressure
w [ Pk 2 mean-field
T,p) = T 7= ibuti
p( ,LL) 3 (27T)3 \/k2 n m*g (f+ / ) contributions

ideal gas with m* mass Degeneracy factor vy = (2Sy + 1)(2In + 1) =4,

nucleon spin Sy = % and isospin Iy =

N | =

distribution function
—1

_ (\/k2 + m*? T o+ gww0> ] i baryonic chemical
exp + 1 ,
T potential

f+

Formally, pressure is known, but how to find the values of ¢ and ©_0 fields?

Thermodynamics requires extremum values of corresponding
potential for a given set of variables (ensemble)!

For the GC ensemble one has to require a maximum of pressure!



Walecka (6-w) model: maximum of pressure

dk?
(27)?

= gw7N/ f—l-_f—]_miwozo

instead of field ¢ it is more convenient to use m* =>

<5p(T,u>> :m%.(m )= Bk m*
T, p

g2 (27)3 \/k2 o (f+ +f2) =

%

0 m

e : : scalar densit
These conditions provide maximum of pressure and y

allow one to recover the standard thermodynamics identities!

Recall 1-st L.. van Hove axiom!

from 1-st Eq. — _ Yo
above mg

e i e

2 2

o )Mez Fm (4 £+ g = g




Walecka (6-w) model: normal nuclear matter

Having 2 parameters C, = % =~ 285.9 GeV~2, C, = % ~ 377.6 GeV

w (oa

one can describe the properties of nuclear matter:
p=0 at T=0 and n=n_0 and W(n_0) =-16 MeV

Provides a reasonable value for the critical endpoint temperature

Compare T,.., = 18.9 MeV with experimental value T,., = 17 = 1 MeV

&
T But there are three problems:
AL 12 ——
- supercritical fluid (@)
101 1. K 0 =553 MeV is too huge!
0.8+gas |
06l mixed phase 2. cannot reproduce flow constraint!
0.4
Walecka 3. m*/m =0.55 is too small!
0.2
should be m*/m =[0.6; 0.8]
0.0

00 05 10 15 20 25
n=mn/n, How can weimprove this model?



Improving Walecka (c-w) model

1. One can add more meson fields, add nonlinear interaction for ¢ field
=> relativistic mean-field approach

=> difficulties with the flow constraint even having 10-15 parameters!

2. One can add a phenomenological repulsion a 1a Van der Waals
to weaken the vector meson repulsion

D. H. Rischke, M. 1. Gorenstein, H. Stoecker and W. Greiner, Z. Phys. C 51, (1991) 485

=> same difficulties remain up to huge value for nucleon hard-core radius
R N=0.7 fm!

3. One can add another phenomenological attraction which depends on
baryonic (vector, not a scalar!) density
M. 1. Gorenstein, D. H. Rischke, H. Stoecker, W. Greiner and K. A.Bugaeyv, J. Phys. G 19, (1993) 69

However, the problem is how to recover the 1-st L. Van Hove axiom?

In Walecka model this occurred automatically, since the rule
to calculate pressure from Lagrangian is known!



Thermodynamically Self-consistent EoS for Nuclear Matter

seneralized pressure

d>k k2 "
T = 5 [ oo YT (fs + /) HnU(®) — / dp U (p) + P(M")

ideal gas with M* mass mean-field contributions

seneralized distribution function

exp (\/k2 il M*QTqE i UW) +1 1 baryonic chemical
potential

f+

n-dependent interaction pressure Pipi(n) = / dpU(p) —nU(n)
0




Thermodynamically Self-consistent EoS for Nuclear Matter

Similarly to Walecka model, the self-consistency condition
provides fulfillment of thermodynamic identities

0 d*k : :
n\u = (ﬁ)T = YN / 2y (fy — ) baryonic charge density

[
=
E

I
~
R

3
~

0 p 0 p
+pulz—| - P energy density
% J /T

Home work: derive Eq. for £ from expression for pressure; use
thermodynamic identities for ideal gas with chemical potential v=p-U(n)



Requirements to Mean-field Potentials

In contrast to Walecka model, our functions P_int(n) and P(M¥)
are not restricted by some Lagrangian!

But we have to pay for this freedom and have to formulate some
general conditions on these functions:

U(—n) = —U(n) odd function of baryonic charge density
for n - co = U(n) —» n% a <1 toobey causality condition,
i.e. speed of sound < speed of light

forn - 0 = U(n) — n® 0<b ie. interaction must vanish at
vanishing density

x\ *\ k .
P(M”) = IZ:ZC’% (M — M*)" with ay <0 higher powers than one can
- get from Lagrangians



Simplest Realization of the Model

1 ,
P(M*) = — 503 (M —M*)?* , U(n)=C?n—C2ns

Compared to Walecka model there is additional attraction and one
additional parameter

This attraction is generated by a peculiar Lagrangian % OF (zﬁ Yy, ¢) ’

Ak 1 3 4 1
E(T, ,LL) = ’)/N/ (27_‘_)3 \/kQ + M*2 (f_|_ — f_> + Eanz — chng — EC'?(M — M*)2

These parameters are normalized on properties of nuclear matter

M*/M | C? (GeV—2) | C? (GeV~?) C3 K, (MeV)
0.543 285.90 377.56 0 503
allowed 0.600 257.40 326.40 0.124 380 allowed
range of 0.635 |  238.08 296.05 | 0.183 300 }range of
values 0.688 |  206.79 251.14 0.254 210 values
0.720 186.94 244.52 0.288 170

Model with K 0 =220-300 MeV obeys the proton flow constraint



Summary

1. We discussed the necessary apparatus to describe the
nuclear matter EoS

2. The properties of normal nuclear matter are used to
normalize the phenomenological EoS

3. The Walecka model is presented and its mean-field
approximation is applied to normal nuclear matter

4. A phenomenological generalization of Walecka model is
discussed and the self-consistency condition is obtained



