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Origin of Hard-core Repulsion

Hard-core repulsion is observed at short distances among ALL 
composite particles which consist from fermions: atoms, 
nuclei, hadrons etc

For noble gases the potential behaves as
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Similarly to the ordinary gases, in the hadronic or nuclear systems the source of

hard-core repulsion is connected to the Pauli blocking e↵ect between the interacting

fermionic constituents existing interior the composite particles (see, for instance, [2]).

This e↵ect appears due to the requirement of antisymmetrization of the wave function

of all fermionic constituents existing in the system and at very high densities it may

lead to the Mott e↵ect, i.e. to a dissociation of composite particles or even the clusters

of particles into their constituents [2]. Therefore, it is evident that at su�ciently

Hence hard-core repulsion is a very good approximation!

Its origin is due to Pauli blocking among the identical fermions 
interior of composite particles!

For nuclei (or hadrons) it is hard to measure the power, but 
physics is similar and, hence, we can use such an approximation!
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Virial expansion for one-component  Boltzmann gas 

change of free energy F due to interaction (E=1/T): e¯ˉ(Fid¡F ) = V ¡N
R

d3r1 : : : d3rN exp (¡¯ˉ
P
i<j

uij)

exp (¡¯ˉ
P
i<j

uij) =
Q
i<j

(1¡ fij) Mayer function:  fij = 1¡ e¡¯ˉu(rij) ! £(2R¡ rij)
HSI 

virial expansion of EoS (H.K. Onnes, 1901) 

Z ´
P

Pid

= 1 +
1X

i=1

B i+1(T )ni (Pid = nT )compressibility function: 

virial  coefficients: 

B2 =
1

2V

Z
d3r1d

3r2f12 ! b = 4v - contribution of binary interactions 

(no energy scale in HSI)  

B3 =
1

3V

Z
d3r1d

3r2d
3r3f12f23f31 ! 10v2

- contribution of three particle interactions 

HSI 

HSI 

(v = 4¼R3=3)(v = 4¼R3=3)

HSI: Bi(T ) = const / vi¡1 ! Z = Z(´); ´ = nv

Monte Carlo calculation for HSI (van Rensburg, 1993): 

18 28 40 54 70 4 10 

red numbers - coefficients  in the Carnahan-Starling approximation (CSA): J. Chem. Phys. 51 (1969) 635,  

only first two terms are 

correctly reproduced  

in the  EVM: Z=1/(1-4K) 

this expansion works well at  ´ . 0:5´ . 0:5decomposed in powers of K 

Z = 1 + 4´ + 10´2 + 18:36´3 + 28:23´4 + 39:74´5 + 53:5´6 + 70:8´7 + : : :

Virial Expansion for Classical Hard Spheres 
Interaction



Van der Waals EoS with Hard-core repulsion 
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Similarly to the ordinary gases, in the hadronic or nuclear systems the source of

hard-core repulsion is connected to the Pauli blocking e↵ect between the interacting

fermionic constituents existing interior the composite particles (see, for instance, [2]).

This e↵ect appears due to the requirement of antisymmetrization of the wave function

of all fermionic constituents existing in the system and at very high densities it may

lead to the Mott e↵ect, i.e. to a dissociation of composite particles or even the clusters

of particles into their constituents [2]. Therefore, it is evident that at su�ciently

high densities one cannot ignore the hard-core repulsion or the finite (e↵ective) size of

composite particles and the success of traditional EoS used in the theory of real gases

Excluded Volume

R

R

2
R

V

excluded

=
2⇡

3
(2R)3

VdWaals pressure correctly 
reproduces 2-nd virial coefficient only:

V >> bN  =>  ideal gas pressure p =T N/V

V => bN  =>  pressure diverges, i.e. there is dense packing
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is particle number 
density
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Similarly to the ordinary gases, in the hadronic or nuclear systems the source of

hard-core repulsion is connected to the Pauli blocking e↵ect between the interacting

VdWaals is applicable at low densities only, at high densities it is too stiff!



Maximum term method
G. ZEEB, K.A. BUGAEV, P. T. REUTER AND H. STÖCKER

Let’s find VdWaals EOS with repulsion in GC Ensemble:
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Similarly to the ordinary gases, in the hadronic or nuclear systems the source of

hard-core repulsion is connected to the Pauli blocking e↵ect between the interacting

fermionic constituents existing interior the composite particles (see, for instance, [2]).

This e↵ect appears due to the requirement of antisymmetrization of the wave function

of all fermionic constituents existing in the system and at very high densities it may

lead to the Mott e↵ect, i.e. to a dissociation of composite particles or even the clusters

of particles into their constituents [2]. Therefore, it is evident that at su�ciently

high densities one cannot ignore the hard-core repulsion or the finite (e↵ective) size of

composite particles and the success of traditional EoS used in the theory of real gases

[9] based on the hard-core repulsion approach tells us that this is a fruitful framework

also for quantum systems. Hence we start from the simplest case, i.e. the quantum
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Homework: please derive p_can

φ(T) is thermal density



VdWaals EOS in GCEnsemble

In fact, we showed that both ensembles are EQUIVALENT! 

G. ZEEB, K.A. BUGAEV, P. T. REUTER AND H. STÖCKER

Let’s find VdWaals EOS with repulsion in GC Ensemble:
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Take ln, get pressure and find limit V ⇤ ⇧ and � = const
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This is the VdWaals gas pressure for Boltzmann particles in GCE



«Derivation» of Van der Waals EoS from 
Virial Expansion

Van der Waals EoS cannot be derived! It is a postulate.

Let’s derive it in three steps: 
!
Consider first the virial (cluster) expansion in GCE:
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Similarly to the ordinary gases, in the hadronic or nuclear systems the source of

hard-core repulsion is connected to the Pauli blocking e↵ect between the interacting

fermionic constituents existing interior the composite particles (see, for instance, [2]).

This e↵ect appears due to the requirement of antisymmetrization of the wave function

of all fermionic constituents existing in the system and at very high densities it may

lead to the Mott e↵ect, i.e. to a dissociation of composite particles or even the clusters

of particles into their constituents [2]. Therefore, it is evident that at su�ciently

high densities one cannot ignore the hard-core repulsion or the finite (e↵ective) size of

composite particles and the success of traditional EoS used in the theory of real gases

[9] based on the hard-core repulsion approach tells us that this is a fruitful framework

also for quantum systems. Hence we start from the simplest case, i.e. the quantum

VdW EoS [14, 15]. The typical form of EoS for quantum quasi-particles of mass mp

and degeneracy factor dp is as follows
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8

dPint(n)

dn

= n

dU(n)

dn

nZ

0

d⇢ U(⇢) � P (M⇤)

U(�n) = �U(n) for n ! 1 ) U(n) ! n

a
, a  1

for n ! 0 ) U(n) ! n

b
, 0  b U(n) = C

2
vn � C

2
dn

1
3

1

2
C

2
vn

2 �
3

4
C

2
dn

4
3 �

1

2
C

2
s(M � M

⇤)2

p = T � e

µ�b p
T ' T � e

µ
T

 

1 �
b p

T

+ ...

!

' T � e

µ
T

⇣
1 � b � e

µ
T + ...

⌘

p = T � e

µ
T

⇣
1 � b � e

µ
T + ...

⌘
' T � e

µ
T

 

1 �
b p

T

!

Similarly to the ordinary gases, in the hadronic or nuclear systems the source of

hard-core repulsion is connected to the Pauli blocking e↵ect between the interacting

fermionic constituents existing interior the composite particles (see, for instance, [2]).

This e↵ect appears due to the requirement of antisymmetrization of the wave function

of all fermionic constituents existing in the system and at very high densities it may

lead to the Mott e↵ect, i.e. to a dissociation of composite particles or even the clusters

of particles into their constituents [2]. Therefore, it is evident that at su�ciently

high densities one cannot ignore the hard-core repulsion or the finite (e↵ective) size of

composite particles and the success of traditional EoS used in the theory of real gases

[9] based on the hard-core repulsion approach tells us that this is a fruitful framework

also for quantum systems. Hence we start from the simplest case, i.e. the quantum

VdW EoS [14, 15]. The typical form of EoS for quantum quasi-particles of mass mp

and degeneracy factor dp is as follows

p(T, µ, nid) = pid(T, ⌫(µ, nid)) � Pint(T, nid) , (1)

Step No 2: move b p/T into exponential

8

dPint(n)

dn

= n

dU(n)

dn

nZ

0

d⇢ U(⇢) � P (M⇤)

U(�n) = �U(n) for n ! 1 ) U(n) ! n

a
, a  1

for n ! 0 ) U(n) ! n

b
, 0  b U(n) = C

2
vn � C

2
dn

1
3

1

2
C

2
vn

2 �
3

4
C

2
dn

4
3 �

1

2
C

2
s(M � M

⇤)2

p = T � e

µ�b p
T ' T � e

µ
T

 

1 �
b p

T

+ ...

!

' T � e

µ
T

⇣
1 � b � e

µ
T + ...

⌘

p = T � e

µ
T

⇣
1 � b � e

µ
T + ...

⌘
' T � e

µ
T

 

1 �
b p

T

!

p ' T � e

µ
T

 

1 �
b p

T

!

= T � e

µ�b p
T

Similarly to the ordinary gases, in the hadronic or nuclear systems the source of

hard-core repulsion is connected to the Pauli blocking e↵ect between the interacting

fermionic constituents existing interior the composite particles (see, for instance, [2]).

This e↵ect appears due to the requirement of antisymmetrization of the wave function

of all fermionic constituents existing in the system and at very high densities it may

lead to the Mott e↵ect, i.e. to a dissociation of composite particles or even the clusters

of particles into their constituents [2]. Therefore, it is evident that at su�ciently

high densities one cannot ignore the hard-core repulsion or the finite (e↵ective) size of

composite particles and the success of traditional EoS used in the theory of real gases

[9] based on the hard-core repulsion approach tells us that this is a fruitful framework

also for quantum systems. Hence we start from the simplest case, i.e. the quantum

Step No 3: extrapolate this EoS 
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Induced Surface Tension EOS (2017) 

1. Allows to go beyond  
the Van der Waals approximation

2. Number of equations is 2 and  
it does not depend on the number 
different hard-core radii!
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Data analysis
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Extrapolation to high densities
Extrapolation to high densities is not unique )
equations for pressure and surface tension can differ
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induced surface tension

Advantages
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V  and S  are  eigenvolume and eigensurface of hadron of sort kk k
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Higher Virial Coefficients of IST EOS 

V.V. Sagun,  K.A.Bugaev, A.I. Ivanytskyi, D.R. Oliinychenko, EPJ Web Conf 137 (2017); 
!
K.A.Bugaev, V.V. Sagun, A.I. Ivanytskyi, E. G. Nikonov, G.M. Zinovjev et. al., Nucl. Phys. A 970 (2018) 133-155
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and allows generalization for multicomponent case
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=> IST EoS is valid for packing fractions  η < 0.22



Comparison with Carnahan-Straling EOS 
                                                      vs        Two component CS EOS:  
point-like pions and nucleons and Δ-isobar with finite hard-core radius 

IST EOS with α = 1.25

IST EOS is causal at very high densities (up to 7 normal nuclear densities) 
 at which the Quark-Gluon Plasma is expected
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Comparison with other one component EoS
One component Boltzmann gas of hard spheres

VdW EoS: Z = (1� 4⌘)

�1 - is rather stiff
Guggenheim EoS: Z = (1� ⌘)

�4 - reproduced up to ⌘ ' 0.2

Carnahan-Starling EoS (reproduces 7 virial coefficients): Z =

1+⌘+⌘2�⌘3

(1�⌘)3

- reproduced up to ⌘ ' 0.22
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, but IST EOS is softer at higher packing fractions  => 

Compressibility for 2-component EOS

VdW

Introduction
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Data analysis
Derivation

Causality of IST EoS at very extreme cases

Mixture of baryons (N and �) and pions

At ↵ = 1.25 multicomponent EoS is causal
up to ' 7 normal nuclear densities where quark matter is expected

A. Ivanytskyi Hadron Resonance Gas Model for An Arbitrarily Large Number of Different Hard-Core Radii

not only provided the description of the hadron multiplicities with highest quality from the lowest AGS
collision energy of a few GeV to the LHC ALICE data measured at the center of mass collision energyp

sNN = 2.76 TeV, but it also allowed us to study the subtlest features of hadron matter thermodynamics
at CFO with very high confidence, and to suggest the novel irregularities and the signals of the mixed
phase formation in the nuclear collisions [8, 9, 12].

Alas, the presently existing N -component HRGM requires to solve N transcendental equations which
may include contributions of hundreds of corresponding hadronic species. Therefore, further increasing
the number of hard-core radii will lead to an essential increase in computational time which does not
appear feasible. Moreover, in view of future experiments at the NICA-JINR and FAIR-GSI accelerators
we expect to obtain many more experimental data with, hopefully, a higher accuracy. These new data
will, in principle, allow us to study the second virial coe�cients of the most abundant hadrons. Therefore,
the development of a new multicomponent HRGM is necessary. The validity of this conclusion was
demonstrated once more in [10] where a thorough analysis of the ALICE data within the conventional
HRGM and with the bag-like prescription for hard-core radii suggested in [13] was performed.

Another restriction to use the HRGM appears due to the fact that the Van der Waals approximation
accounts for the second virial coe�cients and consequently it can safely be applied only to low densities,
i.e. for packing fractions ⌘ =

P

all hadrons
⇢hVh  0.1 [14] where Vh is the eigenvolume of hadron h and ⇢h is

its particle density. It is also necessary to note that the HRGM is the discrete part of the mass-volume
spectrum of quark-gluon bag model with surface tension (QGBSTM) which has a tricritical [15, 16] or
a critical [17, 18, 19] endpoint. The QGBSTM allows one to model the EoS of strongly interacting
matter at high energy densities. In contrast to the HRGM the continuous part of the QGBSTM mass-
volume spectrum, which describes large and heavy quark-gluon-plasma bags [15, 16, 17, 18, 19], employs
the eigenvolume approximation. Such an approximation is applicable at high energy densities, while at
intermediate energy densities the HRGM may become inapplicable because of the superluminal values of
the speed of sound [14] and hence an extension of the HRGM beyond the Van der Waals approximation,
i.e. an excluded-volume model (EVM), is also necessary.

Therefore, in this work we present a completely new version of the HRGM with the multicomponent
hard-core repulsion which, by construction, is the Van der Waals EoS with the induced surface tension
(IST EoS hereafter). This EoS is based on the virial expansion for multicomponent mixture; and hence
it naturally switches between the low and high density limits. Comparing it with the Carnahan-Starling
EoS [20] for one and two particle species we find almost a perfect coincidence between them up to packing
fractions ⌘ ' 0.22-0.24. Its great advantage is that independently of the number of di↵erent hard-core
radii the IST EoS is a system of only two transcendental equations. Using the IST EoS we successfully
fit the traditional set of the hadron multiplicity ratios [4, 6, 7] measured at AGS, SPS, RHIC and ALICE
energies of collisions.

The work is organized as follows. In Section 2 we present the IST EoS, calculate the third and fourth
virial coe�cients for the one-component case and compare this EoS with the Carnahan-Starling EoS. In
Section 3 the necessary formalism is given and the results of fitting the hadron yields ratios are discussed.
Our conclusions are summarized in Section 4.

2 HRGM with the induced surface tension

A high quality description of the hadron yield ratios achieved in the last couple of years by the HRGM
with multicomponent hard-core repulsion (HRGM) is evidence of its great advantage over the one and
two component versions. However, the main disadvantage of such a model is its mathematical complexity,
which leads to an essentially longer time of numerical simulations. The HRGM [7] is a system of N

transcendental equations, where N is the number of employed hard-core radii. Since in the HRGM all

2
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p =
TN

V � bN

= Tn


1 + 4V0n + (4V0n)2 + (4V0n)3 + ...

�

p = Tn


1 + 4V0n + 16(V0n)2 + 64(V0n)3 + ...

�
n =

N

V

U(r) '
1

(r � Rcore)k
, with k 2 [28; 32]

c

2
s =

 
@p

@✏

!

s/n

Similarly to the ordinary gases, in the hadronic or nuclear systems the source of

hard-core repulsion is connected to the Pauli blocking e↵ect between the interacting
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Figure 6: Same as in Fig. 5, but for the center of mass collision energies
p

sNN = 130 GeV and
p

sNN = 200
GeV.

radii of baryons

R⇡=0.15 fm, RK=0.395 fm, R⇤=0.085 fm, Rb=0.365 fm, Rm=0.42 fm

�

2
1/dof = 57.099/55 ' 1.04

R⇡=0.10 fm, RK=0.395 fm, R⇤=0.11 fm, Rb=0.355 fm, Rm=0.40 fm =) �

2
/dof ' 0.95

Compared to the values found by the HRGM [7], i.e. the hard-core radii of baryons Rb=0.355 fm,
mesons Rm=0.4 fm, pions R⇡=0.1 fm, kaons RK=0.395 fm and ⇤-hyperons R⇤=0.11 fm, the hard-core
radii of the IST EoS Rb, Rm and RK are practically unchanged, while the pionic hard-core radius is
increased by 50% and the hard-core radius of ⇤-hyperons is diminished by 20%. From Fig. 4 one can
see that, despite the di↵erent hard-core radii of pions and ⇤-hyperons, the collision energy dependence
of the baryonic chemical potential and temperature at CFO are unchanged compared to the HRGM [7].
The sudden jump of the CFO temperature observed between the collision energies

p
sNN = 4.3 GeV

and
p

sNN = 4.9 GeV also remains unchanged. This is an important finding since such an irregularity,
analyzed for the first time in [8], led to a discovery of possible signals of the mixed phase formation in the
central nuclear collisions [8, 9].

Some typical results of the IST EoS fit are compared with the ones of HRGM in Figs. 5 and 6. As one
can see from these figures at the collision energies

p
sNN = 4.9 GeV,

p
sNN = 6.3 GeV and

p
sNN = 200

GeV the quality of the IST EoS fit is almost the same as the one achieved with the HRGM. At the collision
energies

p
sNN = 7.6 GeV and

p
sNN = 130 GeV one can find an improved description of the �-meson

to proton ratio and the K

+-meson to ⇡

+-meson ratio respectively, while at
p

sNN = 8.8 GeV we found a
slight worsening in the description of proton to ⇡

�-meson ratio and in the ratio ⇤/⇡

� (see Fig. 5). The fit
results for other collision energies obtained by the HRGM and by the IST EoS are hardly distinguishable
from each other.

We would like to mention that the IST EoS provides an improvement of the K

+
/⇡

+ description (the
Strangeness Horn) from �

2
/dof ' 3.92/14 in [7] to �

2
/dof ' 3.29/14 here, while

p
sNN dependences of

⇤/⇡

� and ⇤̄/⇡

� ratios are reproduced here with �

2
/dof ' 11.62/12 and �

2
/dof ' 8.89/8 respectively.
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Conventional  HRGM:

a12 = 4⇡
X

k

R2
k

pk

T
, (18)

a21 =
4

3
⇡

X

k

R3
k

⌃k

T
, (19)

a22 = 1 + 4⇡
X

k

R2
k↵k

⌃k

T
. (20)

Then the particle density of hadrons of sort k is given by

⇢k ⌘
@p

@µk

=
1

T
· pk a22 � ⌃k a12

a11 a22 � a12 a21
. (21)

The charge density of kind A (A 2 {B, S, I3}) of a hadron of sort k can be found by multiplying
(21) by the partial derivative @µk

@µA
= Ak.

References

[1] A. Andronic, P.Braun-Munzinger and J. Stachel, Nucl. Phys. A 772, 167 (2006) and references
therein.

[2] K. A. Bugaev, D. R. Oliinychenko, A. S. Sorin and G. M. Zinovjev, Eur. Phys. J. A 49, 30
(2013).

[3] K. A. Bugaev et al., Europhys. Lett. 104, 22002 (2013).

[4] K. A. Bugaev et al., Phys. Part. Nucl. Lett. 12, 351 (2015).

[5] V. V. Sagun, Ukr. J. Phys. 59, 755 (2014).

[6] S. Chatterjee, R. M. Godbole and S. Gupta, Phys. Lett. B 727, 554 (2013).

[7] K. A. Bugaev et al., Eur. Phys. J. A 52, 175 (2016).
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For a comparison the ideal gas fit results are also shown which correspond to
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The upper panel shows the fit of the ratios, while the lower panel shows the deviation between data
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4 Analysis of Vovchenko-Stoecker model

Now we are ready to apply the IST EOS to the analysis of the ALICE data with the Vovchenko-
Stoecker (VS) prescription of Ref. [8] for the hard-core radii

Rk = R0


mk

m0

� 1
3

, (11)
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Ideal gas 

Similar to J. Stachel, A. Andronic, P. Braun-Munzinger and K. Redlich, J. Phys. Conf. Ser. 509, 012019 
(2014) the (anti)nuclei have the same hard-core radius as baryons! 

Compare J. Stachel et al. fit quality for Tcfo = 156 MeV  

Light (anti)nuclei are included into fit

χ  /dof = 13.58/17 =0.8 ! 2

χ  /dof = 2.4 2  with our one!
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In contrast to J. Stachel, A. Andronic, P. Braun-Munzinger and K. Redlich, J. Phys. Conf. Ser. 509, 
012019 (2014)  (anti)nuclei are NOT included into the fit! 

Radii are taken from the fit of AGS, SPS and RHIC data

3.3 Results for ALICE energy

To fit the ALICE data [25, 26, 27, 28, 29, 30, 31] we use a di↵erent strategy. The reason is that the fit
quality is not sensitive to the values of the hard-core radii. In fact, even the HRGM with the point-like
particles provides a reasonable fit quality [10, 33]. Therefore, in order to avoid the unnecessary waste of
CPU time we adopted the new radii found in this work from fitting the AGS, SPS and RHIC data, then,
similarly to [3], we set all values of chemical potentials to zero, but the factor �s is fixed as �s = 1. Thus,
for the ALICE data we come up with a single fitting parameter, namely the CFO temperature which is
found TCFO ' 154± 7 MeV. Within the error bars this result is in agreement with the similar fits [3, 33].
The achieved description of the ALICE data is shown in Fig. 8. The fit quality �

2
2/dof ' 7.7/5 ' 1.54

of the ALICE data is slightly worse than the one found for the combined fit of the AGS, SPS and RHIC
data. From Fig. 8 one can see that the main part of �

2
2 is generated by only two ratios, i.e. p/⇡

+ and
⇤/⇡

+. Therefore, the combined quality of the AGS, SPS, RHIC and ALICE data description achieved in
the present work is

�

2
tot/dof ' 64.8/60 ' 1.08

Although the found CFO temperature for the ALICE data is rather low, but a priori it was not clear
what the upper boundary for this temperature has to be chosen. For example, the authors of Ref. [13]
claimed that they found the second minimum of �

2
/dof for the ALICE data which is located at the

temperature about 274 MeV. Of course, it is hard to believe that at such a high temperature the hadrons
may exist and that at such huge particle densities the inelastic reactions are frozen, but the question
about the high temperature minimum has to be clarified. The present model is perfectly suited for such
a task, since it is valid in the region where the EVM is inapplicable.

To demonstrate this we employ the multicomponent version of the Carnahan-Starling EoS known as
the MCSL EoS [34]. Such an EoS is well known in the theory of simple liquids [35, 36]. Similarly to
its one-component counterpart [20] the MCSL EoS rather accurately reproduces the pressure of hard
spheres until the packing fraction values ⌘  0.35 � 0.4 [34, 36]. As usual, the packing fraction of the

N -component mixture ⌘ ⌘
NP

k=1

4
3⇡R

3
k⇢k is defined via the set of hard-core radii {Rk} and the corresponding

particle densities {⇢k}. In terms of these notations the MCSL pressure [34] can be cast as

p

CS =
6 T

⇡

"
⇠0

1� ⇠3
+

3 ⇠1⇠2

(1� ⇠3)2
+

3 ⇠

3
2

(1� ⇠3)3
� ⇠3⇠

3
2

(1� ⇠3)3

#

, (29)

⇠n =
⇡

6

NX

k=1

⇢k [2 Rk]
n

. (30)

Using the system (29), (30) we can find out the applicability bounds of the IST EoS at high temperatures
by comparing the IST EoS pressure (1) with the MCSL pressure (29) which we calculate for the same set
of particle densities {⇢k} given by Eq. (21). The results for the compressibility Z = p/(⇢ T ) are given in

Fig. 9. Here the total pressure of the system is p, while the total particle density is ⇢ =
NP

k=1
⇢k. From the

left panel of Fig. 9 one can see that the IST EoS provides a 5% deviation from the MSCL EoS at T ' 280
MeV, i.e. in the region where the second minimum of �

2
/dof is observed in the work [13]. But we do not

observe any additional minimum in our model up to T = 600 MeV.
An entirely di↵erent situation is with the EVM. From the right panel of Fig. 9 one can see that

the EVM is not valid at high temperatures: the conventional HRGM with multicomponent hard-core
repulsion provides 5% deviation from the MCSL EoS at T ' 215 MeV, and, hence, such a model cannot
be used at higher temperatures because the HRGM EoS becomes too sti↵ even compared to the hard

13

Combined fit of AGS, SPS, RHIC and LHC data

χ  /dof = 9.1/10 =0.91 ! 2

Light (anti)nuclei are NOT included into fit

In all our fits  (anti)protons 
and (anti)Ξ-s do not show any 

anomaly compared to  
J. Stachel et.al. fit, 

since we have right physics!

BUT the puzzle of light (anti)nuclei  remains unresolved!  



Main Results for AGS, SPS and RHIC energies  

1. We confirm that there is a jump of T       between √s = 4.3 GeV and √s = 4.9 GeV    CFO

2. We confirm that there is a strangeness enhancement peak at √s = 3.8 GeV  

Only pion and  Λ hyperon radii are changed, but no effect on T and µ_B   

IST EOS (without ALICE):

Figure 6: Same as in Fig. 5, but for the center of mass collision energies
p

sNN = 130 GeV and
p

sNN = 200
GeV.

radii of baryons

R⇡=0.15 fm, RK=0.395 fm, R⇤=0.085 fm, Rb=0.365 fm, Rm=0.42 fm

�

2
1/dof = 57.099/55 ' 1.04

R⇡=0.10 fm, RK=0.395 fm, R⇤=0.11 fm, Rb=0.355 fm, Rm=0.40 fm =) �

2
/dof ' 0.95

Compared to the values found by the HRGM [7], i.e. the hard-core radii of baryons Rb=0.355 fm,
mesons Rm=0.4 fm, pions R⇡=0.1 fm, kaons RK=0.395 fm and ⇤-hyperons R⇤=0.11 fm, the hard-core
radii of the IST EoS Rb, Rm and RK are practically unchanged, while the pionic hard-core radius is
increased by 50% and the hard-core radius of ⇤-hyperons is diminished by 20%. From Fig. 4 one can
see that, despite the di↵erent hard-core radii of pions and ⇤-hyperons, the collision energy dependence
of the baryonic chemical potential and temperature at CFO are unchanged compared to the HRGM [7].
The sudden jump of the CFO temperature observed between the collision energies

p
sNN = 4.3 GeV

and
p

sNN = 4.9 GeV also remains unchanged. This is an important finding since such an irregularity,
analyzed for the first time in [8], led to a discovery of possible signals of the mixed phase formation in the
central nuclear collisions [8, 9].

Some typical results of the IST EoS fit are compared with the ones of HRGM in Figs. 5 and 6. As one
can see from these figures at the collision energies

p
sNN = 4.9 GeV,

p
sNN = 6.3 GeV and

p
sNN = 200

GeV the quality of the IST EoS fit is almost the same as the one achieved with the HRGM. At the collision
energies

p
sNN = 7.6 GeV and

p
sNN = 130 GeV one can find an improved description of the �-meson

to proton ratio and the K

+-meson to ⇡

+-meson ratio respectively, while at
p

sNN = 8.8 GeV we found a
slight worsening in the description of proton to ⇡

�-meson ratio and in the ratio ⇤/⇡

� (see Fig. 5). The fit
results for other collision energies obtained by the HRGM and by the IST EoS are hardly distinguishable
from each other.

We would like to mention that the IST EoS provides an improvement of the K

+
/⇡

+ description (the
Strangeness Horn) from �

2
/dof ' 3.92/14 in [7] to �

2
/dof ' 3.29/14 here, while

p
sNN dependences of

⇤/⇡

� and ⇤̄/⇡

� ratios are reproduced here with �

2
/dof ' 11.62/12 and �

2
/dof ' 8.89/8 respectively.
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V.V. Sagun et al., NPA (2018) and arXiv:1703.00009 [hep-ph]

jump jump

CFO for IST ?



2

their analogs developed in [15]. Therefore, in order to study the influence of the proton flow constraint it is natural
to use a softer EoS from the class suggested in [16]. For this purpose here we formulate a family of 4-parametric EoS
with the phenomenological attraction similar to Ref. [18] which are normalized to the properties of nuclear matter
ground state and obey the proton flow constraint. Using this EoS family, we perform a systematic investigation of
restrictions on the critical temperature Tc and incompressibility factor K0 generated by the flow constraint [14]. This
study allows us to show that the critical compressibility factor Zc of nuclear matter can be essentially lower than the
typical values 0.28� 0.31 obtained by the RMF models [13] and, hence, it can be similar to the Zc values of ordinary
non-organic liquids. Based on these results, we believe that the present approach enables us to make a bridge between
the nuclear matter EoS and the ones for ordinary liquids.

The work is organized as follows. The main ingredients of a novel EoS are given in Section II. Section III is devoted
to a systematic analysis of the proton flow constraint influence on the nuclear matter EoS and its CEP properties.
Our conclusions are given in Section IV.

II. EQUATION OF STATE

Since we develop a phenomenological model of nuclear matter, we are not bound by the Lagrangian choice and,
hence, we consider only the nucleons assuming that e↵ect of the � and heavier baryonic resonances which can appear
at high densities is absorbed in the mean-fields. The hard-core repulsion in the present model is accounted within
a framework developed in Ref. [9]. The model pressure p is a solution of the system (R is the hard-core radius on
nucleons)

p = p

id

(T, ⌫

p

) � p

int

�
n

id

(T, ⌫

p

)

�
, (1)

⌃ = R p

id

(T, ⌫⌃) , (2)

where p

id

(T, µ) is the grand canonical pressure of noninteracting point-like fermions

p

id

(T, ⌫) = Tg

Z
d

3
p

(2⇡)

3
ln


1 + exp

✓
⌫�

p
p

2+m

2

T

◆�
, (3)

and the particle number density is defined as

n

id

(T, ⌫) =

@p

id

@ ⌫

= g

Z
d

3
p

(2⇡)

3

1

exp

✓p
p

2+m

2�⌫
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Here the system temperature is T , m = 940 MeV is the nucleon mass and the nucleon degeneracy factor is g = 4.
The term �p
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in Eq. (1) represents the mean-field contribution to the pressure caused by an attraction between
the nucleons. Of course, the repulsive scattering channels are also present in nuclear matter. However, at densities
below n
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�3, which is the maximal density of the flow constraint [14], they are suppressed by the
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[19–21], while the residual repulsive interaction can be safely accounted by the particle hard-core repulsion.
The quantity ⌃ in Eq. (2) is the surface tension induced by the hard-core repulsion between the nucleons and,

hence, in Ref. [9] it was called as the induced surface tension (IST) in order to distinguish it from the eigensurface
tension of ordinary nuclei. Appearance of the IST is caused by the fact that virial expansion of the pressure includes
the terms which are proportional not only to the eigenvolume V0 =
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of a particle with the hard-core radius R. The surface term contribution is accounted by the induced surface tension
coe�cient ⌃. The meaning of this quantity as the surface tension coe�cient can be easily seen from the e↵ective
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From these equations we conclude that the e↵ects of hard-core repulsion are only partly accounted by the eigenvolume
of particles, while the rest comes through their eigensurface and, consequently, through the IST coe�cient (for a
detailed discussion see [9]). It is also worth to note that the presence of the ideal gas pressures p
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their analogs developed in [15]. Therefore, in order to study the influence of the proton flow constraint it is natural
to use a softer EoS from the class suggested in [16]. For this purpose here we formulate a family of 4-parametric EoS
with the phenomenological attraction similar to Ref. [18] which are normalized to the properties of nuclear matter
ground state and obey the proton flow constraint. Using this EoS family, we perform a systematic investigation of
restrictions on the critical temperature Tc and incompressibility factor K0 generated by the flow constraint [14]. This
study allows us to show that the critical compressibility factor Zc of nuclear matter can be essentially lower than the
typical values 0.28� 0.31 obtained by the RMF models [13] and, hence, it can be similar to the Zc values of ordinary
non-organic liquids. Based on these results, we believe that the present approach enables us to make a bridge between
the nuclear matter EoS and the ones for ordinary liquids.

The work is organized as follows. The main ingredients of a novel EoS are given in Section II. Section III is devoted
to a systematic analysis of the proton flow constraint influence on the nuclear matter EoS and its CEP properties.
Our conclusions are given in Section IV.
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hence, we consider only the nucleons assuming that e↵ect of the � and heavier baryonic resonances which can appear
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Here the system temperature is T , m = 940 MeV is the nucleon mass and the nucleon degeneracy factor is g = 4.
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their analogs developed in [15]. Therefore, in order to study the influence of the proton flow constraint it is natural
to use a softer EoS from the class suggested in [16]. For this purpose here we formulate a family of 4-parametric EoS
with the phenomenological attraction similar to Ref. [18] which are normalized to the properties of nuclear matter
ground state and obey the proton flow constraint. Using this EoS family, we perform a systematic investigation of
restrictions on the critical temperature Tc and incompressibility factor K0 generated by the flow constraint [14]. This
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Here the system temperature is T , m = 940 MeV is the nucleon mass and the nucleon degeneracy factor is g = 4.
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in Eq. (1) represents the mean-field contribution to the pressure caused by an attraction between
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From these equations we conclude that the e↵ects of hard-core repulsion are only partly accounted by the eigenvolume
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This is, actually, one of the reasons of why the repulsion of the present model is exclusively described by the hard-core
repulsion which allows one to avoid such problems for ↵ > 1.

III. NUCLEAR MATTER PROPERTIES

In this work we use the power parameterization of the mean-field potential motivated by Ref. [18]. i.e.
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where the mean-field contribution to the pressure p

int

(n) is obtained from the consistency condition (7). Note that
this is one of the simplest choices of the mean-field potential which includes two parameters only, i.e. C

2
d

and . Since
the parameter ↵ is fixed the other two parameters of the IST model are the hard-core radius R and the constant
potential U0. Also it is important that in a general way one can show that in contrast to other phenomenological
EoS the present one obeys the Third Law of thermodynamics [16].

The IST EoS with four adjustable parameters allows one to simultaneously reproduce the ground state properties of
symmetric nuclear matter, i.e. it has a vanishing pressure p = 0 at zero temperature and the normal nuclear particle
number density n0 = 0.16 fm�3 and the value of its binding energy per nucleon W0 =

✏

n

� m = �16 MeV (here
✏ denotes the energy density) and, hence, the corresponding chemical potential is µ = 923 MeV. The present EoS
with the attraction term (9) was normalized to these properties of nuclear matter ground state and, simultaneously,
it was fitted to obey the proton flow constraint. It is necessary to stress that e↵ects of the symmetry energy were
systematically studied and found to be insignificant for description of the proton flow data [14]. Furthermore, in Ref.
[27] the same conclusion was drawn based on the thorough analysis of a rich collection of the nuclear matter EoSs
which are able to reproduce the maximal value of mass of observed neutrons stars. Thus, the flow constraint is sensitive
only to the isospin independent part of the nuclear matter EoS and, consequently, it can be safely studied with the
symmetric nuclear matter EoS. In our analysis we considered several values of parameter  = 0.1, 0.15, 0.2, 0.25

and 0.3. For a fixed value of parameter  the two curves in the n � p plane were found in such a way that the
upper curve is located not above the upper branch of the flow constraint, while the lower one is located not below
the lower branch of this constraint. The details are clear from Figs. 1 and 2. This is highly nontrivial results for an
EoS with only four adjustable parameters, since to parameterize the proton flow constraint alone one needs at least
8 independent points! One can readily check that all parameterizations of the IST EoS shown in Figs. 1 and 2 also
obey the kaon production constraint obtained in Ref. [28] for the symmetric nuclear matter pressure in the following
range 1.2 n0 < n < 2.2 n0 of the particle number density n.

The larger values of parameter  were not considered, since the good description of the proton flow constraint
cannot be achieved for  � 0.33. The reason is apparent from the lower panel of Fig. 2. The values of parameter 

below 0.1 were not considered as well because they correspond to very large values of the incompressibility constant
K0 ⌘ 9
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. As one can see from Table I for  = 0.1 the minimal value of the incompressibility constant
K0 is about 306 MeV, while for  < 0.1 it gets even larger.

Of course, we employed the other parameterizations of the attractive mean-field potential U(n), namely the Van der
Waals one U(n) = 2an�4V0an

2, the constant one U(n) = c and the Clausius one U(n) =
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the constant values of parameters a and c, but none of them gave as good results, as we found for the parameterization
(9) with ↵ = 1.245. Therefore, we believe that the IST EoS with the attraction (9) catches the correct physics from
the normal nuclear density up to the maximal particle number density n
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' 0.75 fm�3 of the proton flow
constraint.

Similarly to all models with the mean-field attraction the IST EoS has the liquid-gas phase transition, which line
ends at the CEP. The latter is defined as an inflection point in the n � p plane. In other words, at CEP one finds
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The IST EoS supplemented by these conditions alows us to define critical temperature T

c

, chemical potential µ

c

,
density n

c

and pressure p

c

of the present model. The obtained results are summarized in Fig. 3 and in Table I. In
Fig. 3 we divided the range of K0 values into two regions, namely the lower one K0 = [200, 250] MeV and the upper
one K0 = [250, 315] MeV. The lower region of K0 values corresponds to the traditional experimental estimates
(see a discussion in [5]), while the upper one corresponds to the more recent estimates given in [17]. The proton flow
constraint defines the allowed region of K0 and critical temperature T

c

values which are located between the lines
ABC and FED in Fig. 3. From Fig. 3 one can see that the lower region of K0 values determines the rectangle ABEF
for the corresponding T

c

values, while the upper one determines the rectangle BCDE. The obtained range of values
is very similar to the results of RMF models and the non-relativistic mean-field ones discussed in [12].
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their analogs developed in [15]. Therefore, in order to study the influence of the proton flow constraint it is natural
to use a softer EoS from the class suggested in [16]. For this purpose here we formulate a family of 4-parametric EoS
with the phenomenological attraction similar to Ref. [18] which are normalized to the properties of nuclear matter
ground state and obey the proton flow constraint. Using this EoS family, we perform a systematic investigation of
restrictions on the critical temperature Tc and incompressibility factor K0 generated by the flow constraint [14]. This
study allows us to show that the critical compressibility factor Zc of nuclear matter can be essentially lower than the
typical values 0.28� 0.31 obtained by the RMF models [13] and, hence, it can be similar to the Zc values of ordinary
non-organic liquids. Based on these results, we believe that the present approach enables us to make a bridge between
the nuclear matter EoS and the ones for ordinary liquids.

The work is organized as follows. The main ingredients of a novel EoS are given in Section II. Section III is devoted
to a systematic analysis of the proton flow constraint influence on the nuclear matter EoS and its CEP properties.
Our conclusions are given in Section IV.
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Here the system temperature is T , m = 940 MeV is the nucleon mass and the nucleon degeneracy factor is g = 4.
The term �p
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in Eq. (1) represents the mean-field contribution to the pressure caused by an attraction between
the nucleons. Of course, the repulsive scattering channels are also present in nuclear matter. However, at densities
below n
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The quantity ⌃ in Eq. (2) is the surface tension induced by the hard-core repulsion between the nucleons and,
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tension of ordinary nuclei. Appearance of the IST is caused by the fact that virial expansion of the pressure includes
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of a particle with the hard-core radius R. The surface term contribution is accounted by the induced surface tension
coe�cient ⌃. The meaning of this quantity as the surface tension coe�cient can be easily seen from the e↵ective
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From these equations we conclude that the e↵ects of hard-core repulsion are only partly accounted by the eigenvolume
of particles, while the rest comes through their eigensurface and, consequently, through the IST coe�cient (for a
detailed discussion see [9]). It is also worth to note that the presence of the ideal gas pressures p
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in Eqs. (1) - (2)
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 = 0.1  = 0.15  = 0.2  = 0.25  = 0.3
R [fm] 0.28 0.42 0.35 0.48 0.41 0.50 0.47 0.52 0.53 0.54

C

2
d

[MeV · fm

3] 284.98 325.06 206.05 229.57 168.15 179.67 146.97 152.00 133.79 134.60
U0 [MeV ] 567.32 501.65 343.93 312.83 231.42 217.76 162.03 157.41 114.32 113.84
K0 [MeV ] 306.09 465.13 272.55 405.97 242.56 322.80 217.16 256.44 192.35 199.27
µ

c

[MeV ] 890.94 881.01 900.08 895.08 906.44 904.49 911.11 910.53 914.74 914.70
T

c

[MeV ] 17.62 20.60 15.60 17.97 13.93 15.36 12.49 13.20 11.16 11.30
n

c

[fm

�3] 0.009 0.010 0.013 0.014 0.016 0.017 0.018 0.020 0.022 0.022
p

c

[MeV · fm

�3] 0.0186 0.028 0.031 0.045 0.043 0.055 0.053 0.061 0.060 0.062
Z

c

0.1173 0.1359 0.1529 0.1789 0.1929 0.2106 0.2357 0.2311 0.2444 0.2494

TABLE I: Di↵erent sets of parameters which simultaneously reproduce the properties of normal nuclear matter (p = 0 and
n = n0 = 0.16 fm

�3 at µ = 923 MeV , see text for details) and obey the proton flow constraint on the nuclear matter EoS
along with incompressibility factor K0 and parameters of CEP. R, C

2
d

, U0 and  are the adjustable parameters of EoS, while
the baryonic chemical potential µ

c

, T

c

, particle number density n

c

, pressure p

c

and compressibility constant Z

c

⌘ p

c

T

c

n

c

at
CEP are found for each set of model parameters.

However, the IST EoS allows one to obtain an essentially narrower range of K0 and T

c

values. Indeed, if one
requires that this EoS should be applicable at the maximal value of particle number density n

max

' 0.75 fm�3 of
the proton flow constraint, then such a condition acquires the form

4
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, (11)

where the range of the model applicability is given by the maximal packing fraction ⌘

max

of the model. Assuming
that the maximal packing fraction of the present model is ⌘

max

= 0.2, i.e. it is similar to the Boltzmann version
of the IST EoS [23–25], one finds the following inequality on the nucleon hard-core radius R  0.4 fm. This border
line is shown in Fig. 3 by the short dashed line BG. It is necessary to stress that the value 0.4 fm is only 10% larger
than the hard-core radius of baryons recently determined within the IST formulation of the hadron resonance gas
model from fitting the hadronic multiplicities measured in central nuclear collisions at the AGS, SPS, RHIC and LHC
energies [23–25].

If, however, the present model has a wider range of applicability, i.e. ⌘

max

= 0.3, then the inequality for the
nucleon hard-core radius becomes R  0.45 fm. It is shown in Fig. 3 by the long dashed line JH. Since there is no
reason to expect that the quantum version of the IST EoS is applicable at the packing fractions exceeding the value
⌘

max

= 0.3 we consider it as an upper limit of the model applicability. Alternatively, this means that the value 0.45

fm is an upper limit for the hard-core radius of nucleons.
The weak radius constraint R  0.45 fm immediately reduces the range of K0 and T

c

values to the triangle JCH in
Fig. 3. The strong radius constraint R  0.4 fm defines even smaller triangle BCG of the allowed K0 and T

c

values
in Fig.3. Note that for the constraint R  0.45 fm the lower range of K0 values gets narrower, i.e. K0 2 [230; 250]

MeV and, hence, T

c

2 [13.2; 14.3] MeV, while for the inequality R  0.4 fm there are not allowed values of K0

from the lower range of values as one can see from Fig. 3. In other words, the constraint R  0.4 fm rules out the
values of the incompressibility K0 < 250 MeV, while it is consistent with the results of Ref. [17].

The determined range of K0 and T

c

values allows us to reveal the mutual consistency of experimental results. Thus,
the recent experimental estimates of the nuclear matter critical temperature belong to the following range 15.5 MeV
. T

c

. 21 MeV[2, 29–31]. From Fig. 3 one can see that the values T

c

> 18 MeV are inconsistent with the upper
range of K0 values, i.e. the critical temperature values above 18 MeV require K0 values above 315 MeV. On the
other hand the region 15.5 MeV . T

c

. 18 MeV is consistent with the following range of values of incompressibility
constant K0 2 [270; 315] MeV. It is interesting that these ranges of T

c

and K0 values are consistent with the
inequality on the nucleon hard-core radius R  0.35 fm. The latter is just about 17% above the value r ' 0.3

fm used in the realistic nucleon-nucleon interaction potential to reproduce the low energy nucleon-nucleon scattering
data [32, 33].

Although the values of T

c

and K0 are very well consistent with the ones found for the RMF models[12, 13], the
other characteristics of CEP, namely the pressure p

c

, the particle number density n

c

and the compressibility constant
Z

c

=

p

c

T

c

n

c

, are essentially lower than the ones found by the RMF as one can see from Table I. Surprisingly, the
found Z

c

2 [0.117; 0.249] values demonstrate a rich diversity, but all of them are in the range of values known
for real liquids, namely Z

c

' 0.117 corresponds to the hydrogen fluoride, whereas Z

c

' 0.249 corresponds to the
hydrogen chloride [34]. Among other real liquids which fall into the found range of Z

c

values we would mark the
deuterium oxide (Z

c

' 0.228), ammonia (Z
c

' 0.244), water (Z
c

' 0.229), acetic acid (Z
c

' 0.201), acetone
(Z

c

' 0.232), acetonitrile (Z
c

' 0.185), metanol (Z
c

' 0.223) [34] etc. At the same time the range of the critical
compressibility constant of the RMF models is Z

RMF

c

2 [0.284; 0.331] [13], i.e. it is close or slightly above the

Values of  κ > 0.3  

do not obey the proton 

flow constraint!

P. Danielewicz, R. Lacey and W. G. Lynch, Science 298, 1593 (2002)
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Remarkable Features of IST EOS of Dense 
Nuclear Matter at T=0

In contrast to Quantum VdWaals EOS the interaction pressure  
                                          cannot be expanded in Taylor series at zero density!

In contrast to Quantum VdWaals EOS  
                                          IST EOS has a wide range of critical compressibility          
                   constant values!          

5

 = 0.1  = 0.15  = 0.2  = 0.25  = 0.3
R [fm] 0.28 0.42 0.35 0.48 0.41 0.50 0.47 0.52 0.53 0.54

C

2
d

[MeV · fm

3] 284.98 325.06 206.05 229.57 168.15 179.67 146.97 152.00 133.79 134.60
U0 [MeV ] 567.32 501.65 343.93 312.83 231.42 217.76 162.03 157.41 114.32 113.84
K0 [MeV ] 306.09 465.13 272.55 405.97 242.56 322.80 217.16 256.44 192.35 199.27
µ

c

[MeV ] 890.94 881.01 900.08 895.08 906.44 904.49 911.11 910.53 914.74 914.70
T

c

[MeV ] 17.62 20.60 15.60 17.97 13.93 15.36 12.49 13.20 11.16 11.30
n

c

[fm

�3] 0.009 0.010 0.013 0.014 0.016 0.017 0.018 0.020 0.022 0.022
p

c

[MeV · fm

�3] 0.0186 0.028 0.031 0.045 0.043 0.055 0.053 0.061 0.060 0.062
Z

c

0.1173 0.1359 0.1529 0.1789 0.1929 0.2106 0.2357 0.2311 0.2444 0.2494

TABLE I: Di↵erent sets of parameters which simultaneously reproduce the properties of normal nuclear matter (p = 0 and
n = n0 = 0.16 fm

�3 at µ = 923 MeV , see text for details) and obey the proton flow constraint on the nuclear matter EoS
along with incompressibility factor K0 and parameters of CEP. R, C

2
d

, U0 and  are the adjustable parameters of EoS, while
the baryonic chemical potential µ

c

, T

c

, particle number density n

c

, pressure p

c

and compressibility constant Z

c

⌘ p

c

T

c

n

c

at
CEP are found for each set of model parameters.

However, the IST EoS allows one to obtain an essentially narrower range of K0 and T

c

values. Indeed, if one
requires that this EoS should be applicable at the maximal value of particle number density n

max

' 0.75 fm�3 of
the proton flow constraint, then such a condition acquires the form

4

3

⇡R

3
n

max

 ⌘

max

, (11)

where the range of the model applicability is given by the maximal packing fraction ⌘

max

of the model. Assuming
that the maximal packing fraction of the present model is ⌘

max

= 0.2, i.e. it is similar to the Boltzmann version
of the IST EoS [23–25], one finds the following inequality on the nucleon hard-core radius R  0.4 fm. This border
line is shown in Fig. 3 by the short dashed line BG. It is necessary to stress that the value 0.4 fm is only 10% larger
than the hard-core radius of baryons recently determined within the IST formulation of the hadron resonance gas
model from fitting the hadronic multiplicities measured in central nuclear collisions at the AGS, SPS, RHIC and LHC
energies [23–25].

If, however, the present model has a wider range of applicability, i.e. ⌘

max

= 0.3, then the inequality for the
nucleon hard-core radius becomes R  0.45 fm. It is shown in Fig. 3 by the long dashed line JH. Since there is no
reason to expect that the quantum version of the IST EoS is applicable at the packing fractions exceeding the value
⌘

max

= 0.3 we consider it as an upper limit of the model applicability. Alternatively, this means that the value 0.45

fm is an upper limit for the hard-core radius of nucleons.
The weak radius constraint R  0.45 fm immediately reduces the range of K0 and T

c

values to the triangle JCH in
Fig. 3. The strong radius constraint R  0.4 fm defines even smaller triangle BCG of the allowed K0 and T

c

values
in Fig.3. Note that for the constraint R  0.45 fm the lower range of K0 values gets narrower, i.e. K0 2 [230; 250]

MeV and, hence, T

c

2 [13.2; 14.3] MeV, while for the inequality R  0.4 fm there are not allowed values of K0

from the lower range of values as one can see from Fig. 3. In other words, the constraint R  0.4 fm rules out the
values of the incompressibility K0 < 250 MeV, while it is consistent with the results of Ref. [17].

The determined range of K0 and T

c

values allows us to reveal the mutual consistency of experimental results. Thus,
the recent experimental estimates of the nuclear matter critical temperature belong to the following range 15.5 MeV
. T

c

. 21 MeV[2, 29–31]. From Fig. 3 one can see that the values T

c

> 18 MeV are inconsistent with the upper
range of K0 values, i.e. the critical temperature values above 18 MeV require K0 values above 315 MeV. On the
other hand the region 15.5 MeV . T

c

. 18 MeV is consistent with the following range of values of incompressibility
constant K0 2 [270; 315] MeV. It is interesting that these ranges of T

c

and K0 values are consistent with the
inequality on the nucleon hard-core radius R  0.35 fm. The latter is just about 17% above the value r ' 0.3

fm used in the realistic nucleon-nucleon interaction potential to reproduce the low energy nucleon-nucleon scattering
data [32, 33].

Although the values of T

c

and K0 are very well consistent with the ones found for the RMF models[12, 13], the
other characteristics of CEP, namely the pressure p

c

, the particle number density n

c

and the compressibility constant
Z

c

=

p

c

T

c

n

c

, are essentially lower than the ones found by the RMF as one can see from Table I. Surprisingly, the
found Z

c

2 [0.117; 0.249] values demonstrate a rich diversity, but all of them are in the range of values known
for real liquids, namely Z

c

' 0.117 corresponds to the hydrogen fluoride, whereas Z

c

' 0.249 corresponds to the
hydrogen chloride [34]. Among other real liquids which fall into the found range of Z

c

values we would mark the
deuterium oxide (Z

c

' 0.228), ammonia (Z
c

' 0.244), water (Z
c

' 0.229), acetic acid (Z
c

' 0.201), acetone
(Z

c

' 0.232), acetonitrile (Z
c

' 0.185), metanol (Z
c

' 0.223) [34] etc. At the same time the range of the critical
compressibility constant of the RMF models is Z

RMF

c

2 [0.284; 0.331] [13], i.e. it is close or slightly above the

= crit. pressure/(crit. T x crit. density)

 For Classical or Quantum VdWaals EOS => Zc = 0.375

 For all advanced mean-field model EOS of nuclear matter => Zc = 0.28-0.35

For IST EOS => Zc = [0.11-0.294]    <=>  For ordinary liquids => Zc = [0.11-0.4]

What is the universality class of IST EOS?



Virial Coefficients for Quantum VdWaals and 
Quantum IST EOS

EQUATION OF STATE OF QUANTUM GASES BEYOND THE VAN DER WAALS APPROXIMATION

(effective) size of composite particles and the success of
traditional EoS used in the theory of real gases [9] based
on the hard-core repulsion approach tells us that this is
a fruitful framework also for quantum systems. Hence
we start from the simplest case, i.e. the quantum VdW
EoS [14,15]. The typical form of EoS for quantum quasi-
particles of mass mp and degeneracy factor dp is as fol-
lows

p(T, µ, nid) = pid(T, ⌫(µ, nid)) � Pint(T, nid) ,(1)

pid(T, ⌫) = dp

Z
dk

(2⇡

3
)

k

2

3 E(k)

1

e

(

E(k)�⌫
T )

+ ⇣

, (2)

⌫(µ, nid) = µ � b p + U(T, nid) , (3)

where the constant b ⌘ 4V0 =

16⇡
3

R

3
p is the excluded

volume of particles with the hard-core radius Rp (here
V0 is their proper volume), the relativistic energy of par-

ticle with momentum ~

k is E(k) ⌘
q

~

k

2
+ mp

2 and the
density of point-like particles is defined as nid(T, ⌫) ⌘
@pid(T,⌫)

@ ⌫
. The parameter ⇣ switches between the Fermi

(⇣ = 1), the Bose (⇣ = �1) and the Boltzmann (⇣ = 0)
statistics. The interaction part of pressure Pint(T, nid)

and the mean-field U(T, nid) will be specified later.
Note that similarly to the Skyrme-like EoS and the

EoS of real gases it is assumed that the interaction be-
tween quasi-particles described by the system (1)-(3) is
completely accounted by the excluded volume (hard-core
repulsion), by the mean-field potential U(T, nid) and
by the pressure Pint(T, nid). This is in contrast to the
relativistic mean-field models of Walecka type in which
the mass shift of quasi-particles is taken into account.
Since such an effect may be important for the model-
ing the chiral symmetry restoration in hadronic matter
the strongest arguments of whose existence are recently
given in [26], we leave it for a future exploration and con-
centrate here on a simpler EoS defined by Eqs. (1)-(3).

The functions U(T, nid) and Pint(T, nid) are
not independent, due to the thermodynamic identity
n(T, ⌫(µ, nid)) ⌘ @p(T,⌫(µ,nid))

@µ
. Therefore, the

mean-field terms U and Pint should obey the self-
consistency condition

nid

@U(T, nid)

@nid

=

@Pint(T, nid)

@nid

) (4)

Pint(T, nid) = nid U(T, nid) �
Z nid

0
dn U(T, n) , (5)

After integrating by parts Eq. (4), we used in (5) an
obvious condition U(T, 0) < 1. If the condition (5)
is obeyed, then the direct calculation of the µ-derivative
of the pressure (1) gives one the usual expression for

particle number density in terms of the density of point-
like particles

n =

nid

1 + b nid

, (6)

nid(T, ⌫) = dp

Z
dk

(2⇡

3
)

1

e

(

E(k)�⌫
T )

+ ⇣

. (7)

From these equations one finds that n ! b

�1 for nid !
1. The limit nid ! 1 is provided by the conditions
⌫ ! 1 or T ! 1 for ⇣ = {0; 1}, while for ⇣ = �1 it
is provided by the conditions ⌫ ! mp � 0 or T ! 1.

Note that in contrast to other works discussing Eqs.
(4) and (5) through this paper we will use the density of
point-like particles nid as an argument of the functions
U(T, nid) and Pint(T, nid) instead of the physical den-
sity of particles n because for more sophisticated EoS
their relation will be more complicated than (6). Also
such a representation is convenient for a subsequent anal-
ysis because in terms of nid(T, ⌫) the virial expansion
of pid(T, ⌫) looks extremely simple [17]

pid(T, ⌫) = T

1X

l=1

a

(0)
l [nid(T, ⌫)]

l
, where (8)

a

(0)
1 = 1 , (9)

a

(0)
2 = �b

(0)
2 , (10)

a

(0)
3 = 4

h
b

(0)
2

i2
� 2 b

(0)
3 , (11)

a

(0)
4 = �20

h
b

(0)
2

i3
+ 18 b

(0)
2 b

(0)
3 � 3 b

(0)
4 , (12)

. . . . . . (13)

Here the first few virial coefficients a

(0)
l of an ideal quan-

tum gas are expressed in terms of the corresponding
cluster integrals b

(0)
l>1 which depend only on tempera-

ture. The latter can be expressed via the thermal den-
sity of the auxiliary Boltzmann system n

(0)
id (T, ⌫) ⌘

nid(T, ⌫)|⇣=0 of Eq. (7) [17, 30]

b

(0)
l =

(⌥1)

l+1

l

n

(0)
id (T/l, ⌫)

h
n

(0)
id (T, ⌫)

i�l

, (14)

where the upper (lower) sign corresponds to Fermi
(Bose) statistics. For the non-relativistic case the ex-
pression (14) can be further simplified [17] and for an
arbitrary degeneracy factor dp it acquires the form [30]

b

(0)
l

����
nonrel

'
(⌥1)

l+1

l

5
2

 
1

dp


2 ⇡

T mp

� 3
2

!l�1

. (15)
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(effective) size of composite particles and the success of
traditional EoS used in the theory of real gases [9] based
on the hard-core repulsion approach tells us that this is
a fruitful framework also for quantum systems. Hence
we start from the simplest case, i.e. the quantum VdW
EoS [14,15]. The typical form of EoS for quantum quasi-
particles of mass mp and degeneracy factor dp is as fol-
lows

p(T, µ, nid) = pid(T, ⌫(µ, nid)) � Pint(T, nid) ,(1)

pid(T, ⌫) = dp

Z
dk

(2⇡

3
)

k

2

3 E(k)

1

e

(

E(k)�⌫
T )

+ ⇣

, (2)

⌫(µ, nid) = µ � b p + U(T, nid) , (3)

where the constant b ⌘ 4V0 =

16⇡
3

R

3
p is the excluded

volume of particles with the hard-core radius Rp (here
V0 is their proper volume), the relativistic energy of par-

ticle with momentum ~

k is E(k) ⌘
q

~

k

2
+ mp

2 and the
density of point-like particles is defined as nid(T, ⌫) ⌘
@pid(T,⌫)

@ ⌫
. The parameter ⇣ switches between the Fermi

(⇣ = 1), the Bose (⇣ = �1) and the Boltzmann (⇣ = 0)
statistics. The interaction part of pressure Pint(T, nid)

and the mean-field U(T, nid) will be specified later.
Note that similarly to the Skyrme-like EoS and the

EoS of real gases it is assumed that the interaction be-
tween quasi-particles described by the system (1)-(3) is
completely accounted by the excluded volume (hard-core
repulsion), by the mean-field potential U(T, nid) and
by the pressure Pint(T, nid). This is in contrast to the
relativistic mean-field models of Walecka type in which
the mass shift of quasi-particles is taken into account.
Since such an effect may be important for the model-
ing the chiral symmetry restoration in hadronic matter
the strongest arguments of whose existence are recently
given in [26], we leave it for a future exploration and con-
centrate here on a simpler EoS defined by Eqs. (1)-(3).

The functions U(T, nid) and Pint(T, nid) are
not independent, due to the thermodynamic identity
n(T, ⌫(µ, nid)) ⌘ @p(T,⌫(µ,nid))

@µ
. Therefore, the

mean-field terms U and Pint should obey the self-
consistency condition
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@U(T, nid)

@nid

=

@Pint(T, nid)

@nid

) (4)

Pint(T, nid) = nid U(T, nid) �
Z nid

0
dn U(T, n) , (5)

After integrating by parts Eq. (4), we used in (5) an
obvious condition U(T, 0) < 1. If the condition (5)
is obeyed, then the direct calculation of the µ-derivative
of the pressure (1) gives one the usual expression for

particle number density in terms of the density of point-
like particles

n =

nid

1 + b nid

, (6)

nid(T, ⌫) = dp

Z
dk

(2⇡

3
)

1

e

(

E(k)�⌫
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. (7)

From these equations one finds that n ! b

�1 for nid !
1. The limit nid ! 1 is provided by the conditions
⌫ ! 1 or T ! 1 for ⇣ = {0; 1}, while for ⇣ = �1 it
is provided by the conditions ⌫ ! mp � 0 or T ! 1.

Note that in contrast to other works discussing Eqs.
(4) and (5) through this paper we will use the density of
point-like particles nid as an argument of the functions
U(T, nid) and Pint(T, nid) instead of the physical den-
sity of particles n because for more sophisticated EoS
their relation will be more complicated than (6). Also
such a representation is convenient for a subsequent anal-
ysis because in terms of nid(T, ⌫) the virial expansion
of pid(T, ⌫) looks extremely simple [17]

pid(T, ⌫) = T

1X

l=1
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(0)
l [nid(T, ⌫)]
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, where (8)
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Here the first few virial coefficients a

(0)
l of an ideal quan-

tum gas are expressed in terms of the corresponding
cluster integrals b

(0)
l>1 which depend only on tempera-

ture. The latter can be expressed via the thermal den-
sity of the auxiliary Boltzmann system n

(0)
id (T, ⌫) ⌘

nid(T, ⌫)|⇣=0 of Eq. (7) [17, 30]
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where the upper (lower) sign corresponds to Fermi
(Bose) statistics. For the non-relativistic case the ex-
pression (14) can be further simplified [17] and for an
arbitrary degeneracy factor dp it acquires the form [30]
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(effective) size of composite particles and the success of
traditional EoS used in the theory of real gases [9] based
on the hard-core repulsion approach tells us that this is
a fruitful framework also for quantum systems. Hence
we start from the simplest case, i.e. the quantum VdW
EoS [14,15]. The typical form of EoS for quantum quasi-
particles of mass mp and degeneracy factor dp is as fol-
lows

p(T, µ, nid) = pid(T, ⌫(µ, nid)) � Pint(T, nid) ,(1)

pid(T, ⌫) = dp

Z
dk

(2⇡
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E(k)�⌫
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, (2)

⌫(µ, nid) = µ � b p + U(T, nid) , (3)

where the constant b ⌘ 4V0 =

16⇡
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p is the excluded

volume of particles with the hard-core radius Rp (here
V0 is their proper volume), the relativistic energy of par-

ticle with momentum ~

k is E(k) ⌘
q

~

k

2
+ mp

2 and the
density of point-like particles is defined as nid(T, ⌫) ⌘
@pid(T,⌫)

@ ⌫
. The parameter ⇣ switches between the Fermi

(⇣ = 1), the Bose (⇣ = �1) and the Boltzmann (⇣ = 0)
statistics. The interaction part of pressure Pint(T, nid)

and the mean-field U(T, nid) will be specified later.
Note that similarly to the Skyrme-like EoS and the

EoS of real gases it is assumed that the interaction be-
tween quasi-particles described by the system (1)-(3) is
completely accounted by the excluded volume (hard-core
repulsion), by the mean-field potential U(T, nid) and
by the pressure Pint(T, nid). This is in contrast to the
relativistic mean-field models of Walecka type in which
the mass shift of quasi-particles is taken into account.
Since such an effect may be important for the model-
ing the chiral symmetry restoration in hadronic matter
the strongest arguments of whose existence are recently
given in [26], we leave it for a future exploration and con-
centrate here on a simpler EoS defined by Eqs. (1)-(3).

The functions U(T, nid) and Pint(T, nid) are
not independent, due to the thermodynamic identity
n(T, ⌫(µ, nid)) ⌘ @p(T,⌫(µ,nid))

@µ
. Therefore, the

mean-field terms U and Pint should obey the self-
consistency condition
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) (4)

Pint(T, nid) = nid U(T, nid) �
Z nid

0
dn U(T, n) , (5)

After integrating by parts Eq. (4), we used in (5) an
obvious condition U(T, 0) < 1. If the condition (5)
is obeyed, then the direct calculation of the µ-derivative
of the pressure (1) gives one the usual expression for

particle number density in terms of the density of point-
like particles

n =
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, (6)
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From these equations one finds that n ! b

�1 for nid !
1. The limit nid ! 1 is provided by the conditions
⌫ ! 1 or T ! 1 for ⇣ = {0; 1}, while for ⇣ = �1 it
is provided by the conditions ⌫ ! mp � 0 or T ! 1.

Note that in contrast to other works discussing Eqs.
(4) and (5) through this paper we will use the density of
point-like particles nid as an argument of the functions
U(T, nid) and Pint(T, nid) instead of the physical den-
sity of particles n because for more sophisticated EoS
their relation will be more complicated than (6). Also
such a representation is convenient for a subsequent anal-
ysis because in terms of nid(T, ⌫) the virial expansion
of pid(T, ⌫) looks extremely simple [17]
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Here the first few virial coefficients a

(0)
l of an ideal quan-

tum gas are expressed in terms of the corresponding
cluster integrals b

(0)
l>1 which depend only on tempera-

ture. The latter can be expressed via the thermal den-
sity of the auxiliary Boltzmann system n
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where the upper (lower) sign corresponds to Fermi
(Bose) statistics. For the non-relativistic case the ex-
pression (14) can be further simplified [17] and for an
arbitrary degeneracy factor dp it acquires the form [30]

b

(0)
l

����
nonrel

'
(⌥1)

l+1

l

5
2

 
1

dp


2 ⇡

T mp

� 3
2

!l�1

. (15)
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[33] is unphysical. Thus, despite the claims of author of
Ref. [33] such a generalization of the approach [7] to in-
clude the hard-core repulsion in quantum systems leads
to a problem with the Third Law of thermodynamics.

To end this section we express the traditional virial
coefficients a

Q
k of the quantum VdW gas of Eq. (17) in

terms of the classical excluded volume b and the quan-
tum virial coefficients of point-like particles a

(0)
k . Ex-

panding each denominator in Eq. (17) into a series of
powers of n, one can easily find

pid(T, ⌫) = T

"
n +

1X

k=2

a

Q
k n

k

#
, where (22)

a

Q
2 = b + a

(0)
2 , (23)

a

Q
3 = b

2
+ 2 b a

(0)
2 + a

(0)
3 , (24)

a

Q
4 = b

3
+ 3 b

2
a

(0)
2 + 3 b

1
a

(0)
3 + a

(0)
4 , (25)

a

Q
k = b

k�1
+

kX

l=2

(k � 1)!

(l � 1)!(k � l)!

b

k�l
a

(0)
l . (26)

If the interaction pressure Pint(T, nid(n)) of the model
(1) can be expanded into the Taylor series of particle
number density n at n = 0, then one can obtain the
full quantum virial expansion of this EoS. Note that the
coefficients a

(0)
k for the model (1) depend on tempera-

ture only, while specific features of the EoS are stored
in b and in Pint(T, nid(n)). For example, using the
coefficients b = 3.42 fm3 and Pint(T, n) = aattrn

2

(aattr = 329 MeV· fm3) found in [14] for the quantum
VdW EoS of nuclear matter, one can calculate the full
quantum second virial coefficient of the model as

a

Q,tot
2 =

b + a

(0)
2 �

aattr

T

' b +

1

2

5
2
dp


2 ⇡

T mp

� 3
2

�
aattr

T

,(27)

where in the second step of derivation we used the non-
relativistic expression for the cluster integral b

(0)
2 (15).

Taking results from [14], one can find that for nucleons
(dp = 4, mp = 939 MeV) the coefficient a

Q,tot
2 (T ) is

zero at T ' 5.76 MeV and T ' 70.4 MeV, is negative
between these temperatures and then above T ' 70.4

MeV it grows almost linearly with T to a

Q,tot
2 (T =

150 MeV) ' (3.42 + 0.403 � 2.19) fm

3 ' 1.63

fm3 which corresponds to the equivalent hard-core ra-
dius Req ' 0.46 fm at T = 150 MeV. From this es-
timate it is evident that the large value of the equiva-
lent hard-core radius Req for the model [14] is a con-
sequence of the unrealistically large hard-core radius of
nucleons Rn ' 0.59 fm obtained in [14] (also, see a

discussion later), whereas in the most advanced version
of the hadron resonance gas model the hard-core radius
of nucleons is 0.365 fm [24–26] and in the IST EoS of
the nuclear matter this radius is below 0.4 fm [34]. It
is obvious that more realistic attraction than the one
used in [14] would decrease the values of Req and Rn

to physically more adequate ones. Although the explicit
quantum virial expansion (22)-(27) can be used to find
the appropriate attraction in order to cure the problems
of the VdW EoS and extend it to higher particle number
densities and high/low T values, the true solution of this
problem is suggested below.

3. EoS with Induced Surface Tension

In order to overcome the difficulties of the quantum VdW
EoS at high particle number densities we suggest the
following EoS

p = pid(T, ⌫1) � Pint 1(T, nid 1) , (28)
⌃ = Rp [pid(T, ⌫2) � Pint 2(T, nid 2)] , (29)
⌫1 = µ � V0 p � S0 ⌃ + U1(T, nid 1) , (30)
⌫2 = µ � V0 p � ↵S0 ⌃ + U2(T, nid 2) , (31)

where nid A ⌘ @pid(T,⌫A)
@ ⌫A

with A = {1; 2}, S0 =

4⇡R

2
p denotes the proper surface of the hard-core vol-

ume V0. Eq. (28) is an analog of Eq. (1), while the
equation for the induced surface tension coefficient ⌃

(29) was first introduced for the Boltzmann statistics in
[27]. The system (28)-(31) is a quantum generalization
of the Boltzmann EoS in the spirit of work [7]. As it
was argued above the temperature dependent effective
potentials considered in [33] may lead to an unphysi-
cal behavior at low temperatures and, hence, below we
would like to study this problem in details. Also below
we will show what is a principal difference of the EoS
(28)-(31) with the second way to include the hard-core
repulsion in quantum systems discussed in Ref. [33].

The quantity ⌃ defined by (29) is the surface part of
the hard-core repulsion [25]. As it will be shown later,
representing the hard-core repulsion in pressure (28) in
two terms, namely via �V0p and �S0⌃, instead of a
single term �4V0p as it is done in the quantum VdW
EoS, has great advantages and allows one to go beyond
the VdW approximation.

Evidently, the self-consistency conditions for the IST
EoS are similar to Eqs. (4) and (5) (A = {1; 2})

nid A

@UA(T, nid A)

@ nid A

=

@Pint A(T, nid A)

@ nid A

, (32)
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(effective) size of composite particles and the success of
traditional EoS used in the theory of real gases [9] based
on the hard-core repulsion approach tells us that this is
a fruitful framework also for quantum systems. Hence
we start from the simplest case, i.e. the quantum VdW
EoS [14,15]. The typical form of EoS for quantum quasi-
particles of mass mp and degeneracy factor dp is as fol-
lows

p(T, µ, nid) = pid(T, ⌫(µ, nid)) � Pint(T, nid) ,(1)

pid(T, ⌫) = dp

Z
dk

(2⇡

3
)

k

2

3 E(k)

1

e

(

E(k)�⌫
T )

+ ⇣

, (2)

⌫(µ, nid) = µ � b p + U(T, nid) , (3)

where the constant b ⌘ 4V0 =

16⇡
3

R

3
p is the excluded

volume of particles with the hard-core radius Rp (here
V0 is their proper volume), the relativistic energy of par-

ticle with momentum ~

k is E(k) ⌘
q

~

k

2
+ mp

2 and the
density of point-like particles is defined as nid(T, ⌫) ⌘
@pid(T,⌫)

@ ⌫
. The parameter ⇣ switches between the Fermi

(⇣ = 1), the Bose (⇣ = �1) and the Boltzmann (⇣ = 0)
statistics. The interaction part of pressure Pint(T, nid)

and the mean-field U(T, nid) will be specified later.
Note that similarly to the Skyrme-like EoS and the

EoS of real gases it is assumed that the interaction be-
tween quasi-particles described by the system (1)-(3) is
completely accounted by the excluded volume (hard-core
repulsion), by the mean-field potential U(T, nid) and
by the pressure Pint(T, nid). This is in contrast to the
relativistic mean-field models of Walecka type in which
the mass shift of quasi-particles is taken into account.
Since such an effect may be important for the model-
ing the chiral symmetry restoration in hadronic matter
the strongest arguments of whose existence are recently
given in [26], we leave it for a future exploration and con-
centrate here on a simpler EoS defined by Eqs. (1)-(3).

The functions U(T, nid) and Pint(T, nid) are
not independent, due to the thermodynamic identity
n(T, ⌫(µ, nid)) ⌘ @p(T,⌫(µ,nid))

@µ
. Therefore, the

mean-field terms U and Pint should obey the self-
consistency condition

nid

@U(T, nid)

@nid

=

@Pint(T, nid)

@nid

) (4)

Pint(T, nid) = nid U(T, nid) �
Z nid

0
dn U(T, n) , (5)

After integrating by parts Eq. (4), we used in (5) an
obvious condition U(T, 0) < 1. If the condition (5)
is obeyed, then the direct calculation of the µ-derivative
of the pressure (1) gives one the usual expression for

particle number density in terms of the density of point-
like particles

n =

nid

1 + b nid

, (6)

nid(T, ⌫) = dp

Z
dk

(2⇡

3
)

1

e

(

E(k)�⌫
T )

+ ⇣

. (7)

From these equations one finds that n ! b

�1 for nid !
1. The limit nid ! 1 is provided by the conditions
⌫ ! 1 or T ! 1 for ⇣ = {0; 1}, while for ⇣ = �1 it
is provided by the conditions ⌫ ! mp � 0 or T ! 1.

Note that in contrast to other works discussing Eqs.
(4) and (5) through this paper we will use the density of
point-like particles nid as an argument of the functions
U(T, nid) and Pint(T, nid) instead of the physical den-
sity of particles n because for more sophisticated EoS
their relation will be more complicated than (6). Also
such a representation is convenient for a subsequent anal-
ysis because in terms of nid(T, ⌫) the virial expansion
of pid(T, ⌫) looks extremely simple [17]

pid(T, ⌫) = T

1X

l=1

a

(0)
l [nid(T, ⌫)]

l
, where (8)

a

(0)
1 = 1 , (9)

a

(0)
2 = �b

(0)
2 , (10)

a

(0)
3 = 4

h
b

(0)
2

i2
� 2 b

(0)
3 , (11)

a

(0)
4 = �20

h
b

(0)
2

i3
+ 18 b

(0)
2 b

(0)
3 � 3 b

(0)
4 , (12)

. . . . . . (13)

Here the first few virial coefficients a

(0)
l of an ideal quan-

tum gas are expressed in terms of the corresponding
cluster integrals b

(0)
l>1 which depend only on tempera-

ture. The latter can be expressed via the thermal den-
sity of the auxiliary Boltzmann system n

(0)
id (T, ⌫) ⌘

nid(T, ⌫)|⇣=0 of Eq. (7) [17, 30]

b

(0)
l =

(⌥1)

l+1

l

n

(0)
id (T/l, ⌫)

h
n

(0)
id (T, ⌫)

i�l

, (14)

where the upper (lower) sign corresponds to Fermi
(Bose) statistics. For the non-relativistic case the ex-
pression (14) can be further simplified [17] and for an
arbitrary degeneracy factor dp it acquires the form [30]

b

(0)
l

����
nonrel

'
(⌥1)

l+1

l

5
2

 
1

dp


2 ⇡

T mp

� 3
2

!l�1

. (15)
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For high temperatures one can write an ultra-relativistic
analog of Eq. (15) for a few values of l = 2, 3, ... ⌧
T/mp

b

(0)
l

����
urel

'
(⌥1)

l+1

l

4


⇡

2

dp T

3

�l�1

. (16)

Suppose that the coefficients a

(0)
l from Eq. (8) are

known and that the virial expansion is convergent for
the considered T . Then using Eq. (6) one finds nid =

n/(1 � b n) and, hence, one can rewrite Eq. (8) as

pid(T, ⌫)

T n

=

1

1 � b n

+

1X

l=2

a

(0)
l

[n]

l�1

[1 � b n]

l
. (17)

Note that the expansions of such a type for a system
pressure which use the variable n/(1 � b n) instead of
n are well-known for the hard discs [31] and hard spheres
[32] EoS, since they provide very fast convergence of the
series due to very fast decrease of their coefficients.

As one can see from Eqs. (15) and (16) at high temper-
atures all cluster integrals and virial coefficients of ideal
quantum gas strongly decrease with the temperature T

and, hence, at high temperatures the virial expansion of
pid(T, ⌫) is defined by the first (classical) term on the
right hand side of (17), i.e. in this case one gets

pid(T, ⌫)

T n

' 1 + 4V0 n + (4V0 n)

2
+ (4V0 n)

3
+ ...,(18)

where after expanding the first term on the right hand
side of (17) we used the relation between b and V0. From
this equation one sees that only the second virial coef-
ficient, 4V0, coincides with the one for the gas of hard
spheres, while the third, 16V

2
0 , and the fourth, 64V

3
0

virial coefficients are essentially larger than their coun-
terparts B3 = 10V

2
0 and B4 = 18.36V

3
0 of the gas

of hard spheres. Also Eq. (17) can naturally explain
why in the work [13] the authors insisted on the inter-
action pressure Pint to be a linear function of T (see
a statement after Eq. (62) in [13]): if one chooses the
interaction pressure in the form

Pint(T, n(nid)) =

Tn

⇥
(b

2 � B3)n
2
+ (b

3 � B4)n
3
+ (b

4 � B5)n
4
+ ...

⇤
, (19)

then at high temperatures the quantum corrections
are negligible and, hence, for such a choice of
Pint(T, n(nid)) with the corresponding value for the
mean-field potential U(T, n(nid)) obeying the self-
consistency condition (4), one can improve the total
pressure of mean-field model by matching its repulsive
part to the pressure of hard spheres.

The problem, however, arises at low temperatures,
while calculating the entropy density for the model
with Pint(T, n(nid)) (19). Indeed, for the choice
U(T, n(nid)) = g(T )f(n(nid)) from the thermody-
namic identities s =

@p(T,µ)
@T

and sid =

@pid(T,⌫)
@T

one
finds [13]

s(T, µ) =

⇥
sid +

⇥
nid

@U
@T

� @Pint

@T

⇤⇤
[1 + b nid]

�1
= (20)


sid +

dg(T )

d T

Z nid

0
dñ f(n(ñ))

�
[1 + b nid]

�1
, (21)

where in deriving Eq. (21) we used an explicit form
of Pint (19) and Eq. (5). As one can see from (21)
the mean-field model with linear T dependence of U or,
equivalently, of Pint, i.e. g(T ) = T ) dg(T )

d T
= 1,

breaks down the Third Law of thermodynamics, since
at T = 0 one finds sid(T = 0, ⌫) = 0 by con-
struction, whereas s(T = 0, µ) = [1 + b nid]

�1 ·
nidR

0
dñ f(n(ñ)) 6= 0, unless f ⌘ 0. Hence, the mean-

field model with the linear T dependence of Pint may
be very good at high temperatures, for which the Boltz-
mann statistics is valid, but it is unphysical at T = 0.
Of course, one can repair this defect by choosing more
complicated function g(T ), which g(T ) ⇠ T at high
T , but its derivative g

0
(T ) vanishes at T = 0 provid-

ing the fulfillment of the Third Law of thermodynam-
ics. However, in this case the whole idea to compen-
sate the defects of the VdW EoS by tuning the inter-
acting part of pressure does not work at low T , since
in this case Pint = g(T )F (nid) would vanish faster
than the term Tnid on the right hand side of Eq. (17).
Thus, we explicitly showed here that at low T the mean-

field models defined by Eqs. (1)-(5) either are unphysi-

cal, if Pint = TF (nid), or they cannot go beyond the

VdW approximation by adjusting their interaction pres-

sure Pint.

Such a conclusion can be also applied to the one of
two ways to introduce the excluded volume correction
into the quantum second virial coefficients discussed in
Ref. [33]. Although the model of Ref. [33] contains the
scalar mean-fields which modify the masses of particles,
the effective potential approach to treat the excluded
volume correction of Ref. [33] with the linear T depen-
dence of the repulsive effective potential Wi (equivalent
to the mean-field potential �U in our notations) of the
i-th particle sort (see Eqs. (20) and (46) and (47) in [33])
should unavoidably lead to a break down of the Third
Law of thermodynamics. Therefore, we conclude that
such a way to introduce the excluded volume correction
into the quantum second virial coefficients discussed in
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(effective) size of composite particles and the success of
traditional EoS used in the theory of real gases [9] based
on the hard-core repulsion approach tells us that this is
a fruitful framework also for quantum systems. Hence
we start from the simplest case, i.e. the quantum VdW
EoS [14,15]. The typical form of EoS for quantum quasi-
particles of mass mp and degeneracy factor dp is as fol-
lows

p(T, µ, nid) = pid(T, ⌫(µ, nid)) � Pint(T, nid) ,(1)

pid(T, ⌫) = dp

Z
dk

(2⇡

3
)

k

2

3 E(k)

1

e

(

E(k)�⌫
T )

+ ⇣

, (2)

⌫(µ, nid) = µ � b p + U(T, nid) , (3)

where the constant b ⌘ 4V0 =

16⇡
3

R

3
p is the excluded

volume of particles with the hard-core radius Rp (here
V0 is their proper volume), the relativistic energy of par-

ticle with momentum ~

k is E(k) ⌘
q

~

k

2
+ mp

2 and the
density of point-like particles is defined as nid(T, ⌫) ⌘
@pid(T,⌫)

@ ⌫
. The parameter ⇣ switches between the Fermi

(⇣ = 1), the Bose (⇣ = �1) and the Boltzmann (⇣ = 0)
statistics. The interaction part of pressure Pint(T, nid)

and the mean-field U(T, nid) will be specified later.
Note that similarly to the Skyrme-like EoS and the

EoS of real gases it is assumed that the interaction be-
tween quasi-particles described by the system (1)-(3) is
completely accounted by the excluded volume (hard-core
repulsion), by the mean-field potential U(T, nid) and
by the pressure Pint(T, nid). This is in contrast to the
relativistic mean-field models of Walecka type in which
the mass shift of quasi-particles is taken into account.
Since such an effect may be important for the model-
ing the chiral symmetry restoration in hadronic matter
the strongest arguments of whose existence are recently
given in [26], we leave it for a future exploration and con-
centrate here on a simpler EoS defined by Eqs. (1)-(3).

The functions U(T, nid) and Pint(T, nid) are
not independent, due to the thermodynamic identity
n(T, ⌫(µ, nid)) ⌘ @p(T,⌫(µ,nid))

@µ
. Therefore, the

mean-field terms U and Pint should obey the self-
consistency condition

nid

@U(T, nid)

@nid

=

@Pint(T, nid)

@nid

) (4)

Pint(T, nid) = nid U(T, nid) �
Z nid

0
dn U(T, n) , (5)

After integrating by parts Eq. (4), we used in (5) an
obvious condition U(T, 0) < 1. If the condition (5)
is obeyed, then the direct calculation of the µ-derivative
of the pressure (1) gives one the usual expression for

particle number density in terms of the density of point-
like particles

n =

nid

1 + b nid

, (6)

nid(T, ⌫) = dp

Z
dk

(2⇡

3
)

1

e

(

E(k)�⌫
T )

+ ⇣

. (7)

From these equations one finds that n ! b

�1 for nid !
1. The limit nid ! 1 is provided by the conditions
⌫ ! 1 or T ! 1 for ⇣ = {0; 1}, while for ⇣ = �1 it
is provided by the conditions ⌫ ! mp � 0 or T ! 1.

Note that in contrast to other works discussing Eqs.
(4) and (5) through this paper we will use the density of
point-like particles nid as an argument of the functions
U(T, nid) and Pint(T, nid) instead of the physical den-
sity of particles n because for more sophisticated EoS
their relation will be more complicated than (6). Also
such a representation is convenient for a subsequent anal-
ysis because in terms of nid(T, ⌫) the virial expansion
of pid(T, ⌫) looks extremely simple [17]

pid(T, ⌫) = T

1X

l=1

a

(0)
l [nid(T, ⌫)]

l
, where (8)

a

(0)
1 = 1 , (9)

a

(0)
2 = �b

(0)
2 , (10)

a

(0)
3 = 4

h
b

(0)
2

i2
� 2 b

(0)
3 , (11)

a

(0)
4 = �20

h
b

(0)
2

i3
+ 18 b

(0)
2 b

(0)
3 � 3 b

(0)
4 , (12)

. . . . . . (13)

Here the first few virial coefficients a

(0)
l of an ideal quan-

tum gas are expressed in terms of the corresponding
cluster integrals b

(0)
l>1 which depend only on tempera-

ture. The latter can be expressed via the thermal den-
sity of the auxiliary Boltzmann system n

(0)
id (T, ⌫) ⌘

nid(T, ⌫)|⇣=0 of Eq. (7) [17, 30]

b

(0)
l =

(⌥1)

l+1

l

n

(0)
id (T/l, ⌫)

h
n

(0)
id (T, ⌫)

i�l

, (14)

where the upper (lower) sign corresponds to Fermi
(Bose) statistics. For the non-relativistic case the ex-
pression (14) can be further simplified [17] and for an
arbitrary degeneracy factor dp it acquires the form [30]

b

(0)
l

����
nonrel

'
(⌥1)

l+1

l

5
2

 
1

dp


2 ⇡

T mp

� 3
2

!l�1

. (15)
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(effective) size of composite particles and the success of
traditional EoS used in the theory of real gases [9] based
on the hard-core repulsion approach tells us that this is
a fruitful framework also for quantum systems. Hence
we start from the simplest case, i.e. the quantum VdW
EoS [14,15]. The typical form of EoS for quantum quasi-
particles of mass mp and degeneracy factor dp is as fol-
lows

p(T, µ, nid) = pid(T, ⌫(µ, nid)) � Pint(T, nid) ,(1)

pid(T, ⌫) = dp

Z
dk

(2⇡

3
)

k

2

3 E(k)

1

e

(

E(k)�⌫
T )

+ ⇣

, (2)

⌫(µ, nid) = µ � b p + U(T, nid) , (3)

where the constant b ⌘ 4V0 =

16⇡
3

R

3
p is the excluded

volume of particles with the hard-core radius Rp (here
V0 is their proper volume), the relativistic energy of par-

ticle with momentum ~

k is E(k) ⌘
q

~

k

2
+ mp

2 and the
density of point-like particles is defined as nid(T, ⌫) ⌘
@pid(T,⌫)

@ ⌫
. The parameter ⇣ switches between the Fermi

(⇣ = 1), the Bose (⇣ = �1) and the Boltzmann (⇣ = 0)
statistics. The interaction part of pressure Pint(T, nid)

and the mean-field U(T, nid) will be specified later.
Note that similarly to the Skyrme-like EoS and the

EoS of real gases it is assumed that the interaction be-
tween quasi-particles described by the system (1)-(3) is
completely accounted by the excluded volume (hard-core
repulsion), by the mean-field potential U(T, nid) and
by the pressure Pint(T, nid). This is in contrast to the
relativistic mean-field models of Walecka type in which
the mass shift of quasi-particles is taken into account.
Since such an effect may be important for the model-
ing the chiral symmetry restoration in hadronic matter
the strongest arguments of whose existence are recently
given in [26], we leave it for a future exploration and con-
centrate here on a simpler EoS defined by Eqs. (1)-(3).

The functions U(T, nid) and Pint(T, nid) are
not independent, due to the thermodynamic identity
n(T, ⌫(µ, nid)) ⌘ @p(T,⌫(µ,nid))

@µ
. Therefore, the

mean-field terms U and Pint should obey the self-
consistency condition

nid

@U(T, nid)

@nid

=

@Pint(T, nid)

@nid

) (4)

Pint(T, nid) = nid U(T, nid) �
Z nid

0
dn U(T, n) , (5)

After integrating by parts Eq. (4), we used in (5) an
obvious condition U(T, 0) < 1. If the condition (5)
is obeyed, then the direct calculation of the µ-derivative
of the pressure (1) gives one the usual expression for

particle number density in terms of the density of point-
like particles

n =

nid

1 + b nid

, (6)

nid(T, ⌫) = dp

Z
dk

(2⇡

3
)

1

e

(

E(k)�⌫
T )

+ ⇣

. (7)

From these equations one finds that n ! b

�1 for nid !
1. The limit nid ! 1 is provided by the conditions
⌫ ! 1 or T ! 1 for ⇣ = {0; 1}, while for ⇣ = �1 it
is provided by the conditions ⌫ ! mp � 0 or T ! 1.

Note that in contrast to other works discussing Eqs.
(4) and (5) through this paper we will use the density of
point-like particles nid as an argument of the functions
U(T, nid) and Pint(T, nid) instead of the physical den-
sity of particles n because for more sophisticated EoS
their relation will be more complicated than (6). Also
such a representation is convenient for a subsequent anal-
ysis because in terms of nid(T, ⌫) the virial expansion
of pid(T, ⌫) looks extremely simple [17]

pid(T, ⌫) = T

1X

l=1

a

(0)
l [nid(T, ⌫)]

l
, where (8)

a

(0)
1 = 1 , (9)

a

(0)
2 = �b

(0)
2 , (10)

a

(0)
3 = 4

h
b

(0)
2

i2
� 2 b

(0)
3 , (11)

a

(0)
4 = �20

h
b

(0)
2

i3
+ 18 b

(0)
2 b

(0)
3 � 3 b

(0)
4 , (12)

. . . . . . (13)

Here the first few virial coefficients a

(0)
l of an ideal quan-

tum gas are expressed in terms of the corresponding
cluster integrals b

(0)
l>1 which depend only on tempera-

ture. The latter can be expressed via the thermal den-
sity of the auxiliary Boltzmann system n

(0)
id (T, ⌫) ⌘

nid(T, ⌫)|⇣=0 of Eq. (7) [17, 30]

b

(0)
l =

(⌥1)

l+1

l

n

(0)
id (T/l, ⌫)

h
n

(0)
id (T, ⌫)

i�l

, (14)

where the upper (lower) sign corresponds to Fermi
(Bose) statistics. For the non-relativistic case the ex-
pression (14) can be further simplified [17] and for an
arbitrary degeneracy factor dp it acquires the form [30]

b

(0)
l

����
nonrel

'
(⌥1)

l+1

l

5
2

 
1

dp


2 ⇡

T mp

� 3
2

!l�1

. (15)
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[33] is unphysical. Thus, despite the claims of author of
Ref. [33] such a generalization of the approach [7] to in-
clude the hard-core repulsion in quantum systems leads
to a problem with the Third Law of thermodynamics.

To end this section we express the traditional virial
coefficients a

Q
k of the quantum VdW gas of Eq. (17) in

terms of the classical excluded volume b and the quan-
tum virial coefficients of point-like particles a

(0)
k . Ex-

panding each denominator in Eq. (17) into a series of
powers of n, one can easily find

pid(T, ⌫) = T

"
n +

1X

k=2

a

Q
k n

k

#
, where (22)

a

Q
2 = b + a

(0)
2 , (23)

a

Q
3 = b

2
+ 2 b a

(0)
2 + a

(0)
3 , (24)

a

Q
4 = b

3
+ 3 b

2
a

(0)
2 + 3 b

1
a

(0)
3 + a

(0)
4 , (25)

a

Q
k = b

k�1
+

kX

l=2

(k � 1)!

(l � 1)!(k � l)!

b

k�l
a

(0)
l . (26)

If the interaction pressure Pint(T, nid(n)) of the model
(1) can be expanded into the Taylor series of particle
number density n at n = 0, then one can obtain the
full quantum virial expansion of this EoS. Note that the
coefficients a

(0)
k for the model (1) depend on tempera-

ture only, while specific features of the EoS are stored
in b and in Pint(T, nid(n)). For example, using the
coefficients b = 3.42 fm3 and Pint(T, n) = aattrn

2

(aattr = 329 MeV· fm3) found in [14] for the quantum
VdW EoS of nuclear matter, one can calculate the full
quantum second virial coefficient of the model as

a

Q,tot
2 =

b + a

(0)
2 �

aattr

T

' b +

1

2

5
2
dp


2 ⇡

T mp

� 3
2

�
aattr

T

,(27)

where in the second step of derivation we used the non-
relativistic expression for the cluster integral b

(0)
2 (15).

Taking results from [14], one can find that for nucleons
(dp = 4, mp = 939 MeV) the coefficient a

Q,tot
2 (T ) is

zero at T ' 5.76 MeV and T ' 70.4 MeV, is negative
between these temperatures and then above T ' 70.4

MeV it grows almost linearly with T to a

Q,tot
2 (T =

150 MeV) ' (3.42 + 0.403 � 2.19) fm

3 ' 1.63

fm3 which corresponds to the equivalent hard-core ra-
dius Req ' 0.46 fm at T = 150 MeV. From this es-
timate it is evident that the large value of the equiva-
lent hard-core radius Req for the model [14] is a con-
sequence of the unrealistically large hard-core radius of
nucleons Rn ' 0.59 fm obtained in [14] (also, see a

discussion later), whereas in the most advanced version
of the hadron resonance gas model the hard-core radius
of nucleons is 0.365 fm [24–26] and in the IST EoS of
the nuclear matter this radius is below 0.4 fm [34]. It
is obvious that more realistic attraction than the one
used in [14] would decrease the values of Req and Rn

to physically more adequate ones. Although the explicit
quantum virial expansion (22)-(27) can be used to find
the appropriate attraction in order to cure the problems
of the VdW EoS and extend it to higher particle number
densities and high/low T values, the true solution of this
problem is suggested below.

3. EoS with Induced Surface Tension

In order to overcome the difficulties of the quantum VdW
EoS at high particle number densities we suggest the
following EoS

p = pid(T, ⌫1) � Pint 1(T, nid 1) , (28)
⌃ = Rp [pid(T, ⌫2) � Pint 2(T, nid 2)] , (29)
⌫1 = µ � V0 p � S0 ⌃ + U1(T, nid 1) , (30)
⌫2 = µ � V0 p � ↵S0 ⌃ + U2(T, nid 2) , (31)

where nid A ⌘ @pid(T,⌫A)
@ ⌫A

with A = {1; 2}, S0 =

4⇡R

2
p denotes the proper surface of the hard-core vol-

ume V0. Eq. (28) is an analog of Eq. (1), while the
equation for the induced surface tension coefficient ⌃

(29) was first introduced for the Boltzmann statistics in
[27]. The system (28)-(31) is a quantum generalization
of the Boltzmann EoS in the spirit of work [7]. As it
was argued above the temperature dependent effective
potentials considered in [33] may lead to an unphysi-
cal behavior at low temperatures and, hence, below we
would like to study this problem in details. Also below
we will show what is a principal difference of the EoS
(28)-(31) with the second way to include the hard-core
repulsion in quantum systems discussed in Ref. [33].

The quantity ⌃ defined by (29) is the surface part of
the hard-core repulsion [25]. As it will be shown later,
representing the hard-core repulsion in pressure (28) in
two terms, namely via �V0p and �S0⌃, instead of a
single term �4V0p as it is done in the quantum VdW
EoS, has great advantages and allows one to go beyond
the VdW approximation.

Evidently, the self-consistency conditions for the IST
EoS are similar to Eqs. (4) and (5) (A = {1; 2})

nid A

@UA(T, nid A)

@ nid A

=

@Pint A(T, nid A)

@ nid A

, (32)
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latter can be expressed via the thermal density of the auxiliary Boltzmann system

n

(0)
id (T, ⌫) ⌘ nid(T, ⌫)|⇣=0 of Eq. (7) [17, 30]

b

(0)
l =

(⌥1)l+1

l

n

(0)
id (T/l, ⌫)

h
n

(0)
id (T, ⌫)

i�l
, (14)

where the upper (lower) sign corresponds to Fermi (Bose) statistics. For the non-

relativistic case the expression (14) can be further simplified [17] and for an arbitrary

degeneracy factor dp it acquires the form [30]

b

(0)
l

����
nonrel

'
(⌥1)l+1

l

5
2

0

@ 1

dp

"
2 ⇡

T mp

#3
2

1

A
l�1

. (15)

For high temperatures one can write an ultra-relativistic analog of Eq. (15) for a few

values of l = 2, 3, ... ⌧ T/mp

b

(0)
l

����
urel

'
(⌥1)l+1

l

4

"
⇡

2

dp T

3

#l�1

. (16)

Suppose that the coe�cients a

(0)
l from Eq. (8) are known and that the virial expansion

is convergent for the considered T . Then using Eq. (6) one finds nid = n/(1 � b n)

and, hence, one can rewrite Eq. (8) as

nid =
n

1 � b n

)
pid(T, ⌫)

T n

=
1

1 � b n

+
1X

l=2

a

(0)
l

[n]l�1

[1 � b n]l
. (17)

Note that the expansions of such a type for a system pressure which use the variable

n/(1 � b n) instead of n are well-known for the hard discs [31] and hard spheres [32]

EoS, since they provide very fast convergence of the series due to very fast decrease of

their coe�cients.

As one can see from Eqs. (15) and (16) at high temperatures all cluster integrals

and virial coe�cients of ideal quantum gas strongly decrease with the temperature T

and, hence, at high temperatures the virial expansion of pid(T, ⌫) is defined by the first

(classical) term on the right hand side of (17), i.e. in this case one gets

pid(T, ⌫)

T n

' 1 + 4V0 n + (4V0 n)2 + (4V0 n)3 + ..., (18)

where after expanding the first term on the right hand side of (17) we used the relation

between b and V0. From this equation one sees that only the second virial coe�cient,

Substituting the VdWaals relation

Expanding all denominators, one 
gets the true virial expansion for  
quantum VdWaals EoS
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(0)
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����
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5
2

0
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is convergent for the considered T . Then using Eq. (6) one finds nid = n/(1 � b n)

and, hence, one can rewrite Eq. (8) as

nid =
n

1 � b n

)
pid(T, ⌫)

T n

=
1

1 � b n

+
1X
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[33] is unphysical. Thus, despite the claims of author of
Ref. [33] such a generalization of the approach [7] to in-
clude the hard-core repulsion in quantum systems leads
to a problem with the Third Law of thermodynamics.

To end this section we express the traditional virial
coefficients a

Q
k of the quantum VdW gas of Eq. (17) in

terms of the classical excluded volume b and the quan-
tum virial coefficients of point-like particles a

(0)
k . Ex-

panding each denominator in Eq. (17) into a series of
powers of n, one can easily find

pid(T, ⌫) = T

"
n +

1X

k=2

a

Q
k n

k

#
, where (22)

a

Q
2 = b + a

(0)
2 , (23)

a

Q
3 = b

2
+ 2 b a

(0)
2 + a

(0)
3 , (24)

a

Q
4 = b

3
+ 3 b

2
a

(0)
2 + 3 b

1
a

(0)
3 + a

(0)
4 , (25)

a

Q
k = b

k�1
+

kX

l=2

(k � 1)!

(l � 1)!(k � l)!

b

k�l
a

(0)
l . (26)

If the interaction pressure Pint(T, nid(n)) of the model
(1) can be expanded into the Taylor series of particle
number density n at n = 0, then one can obtain the
full quantum virial expansion of this EoS. Note that the
coefficients a

(0)
k for the model (1) depend on tempera-

ture only, while specific features of the EoS are stored
in b and in Pint(T, nid(n)). For example, using the
coefficients b = 3.42 fm3 and Pint(T, n) = aattrn

2

(aattr = 329 MeV· fm3) found in [14] for the quantum
VdW EoS of nuclear matter, one can calculate the full
quantum second virial coefficient of the model as

a

Q,tot
2 =

b + a

(0)
2 �

aattr

T

' b +

1

2

5
2
dp


2 ⇡

T mp

� 3
2

�
aattr

T

,(27)

where in the second step of derivation we used the non-
relativistic expression for the cluster integral b

(0)
2 (15).

Taking results from [14], one can find that for nucleons
(dp = 4, mp = 939 MeV) the coefficient a

Q,tot
2 (T ) is

zero at T ' 5.76 MeV and T ' 70.4 MeV, is negative
between these temperatures and then above T ' 70.4

MeV it grows almost linearly with T to a

Q,tot
2 (T =

150 MeV) ' (3.42 + 0.403 � 2.19) fm

3 ' 1.63

fm3 which corresponds to the equivalent hard-core ra-
dius Req ' 0.46 fm at T = 150 MeV. From this es-
timate it is evident that the large value of the equiva-
lent hard-core radius Req for the model [14] is a con-
sequence of the unrealistically large hard-core radius of
nucleons Rn ' 0.59 fm obtained in [14] (also, see a

discussion later), whereas in the most advanced version
of the hadron resonance gas model the hard-core radius
of nucleons is 0.365 fm [24–26] and in the IST EoS of
the nuclear matter this radius is below 0.4 fm [34]. It
is obvious that more realistic attraction than the one
used in [14] would decrease the values of Req and Rn

to physically more adequate ones. Although the explicit
quantum virial expansion (22)-(27) can be used to find
the appropriate attraction in order to cure the problems
of the VdW EoS and extend it to higher particle number
densities and high/low T values, the true solution of this
problem is suggested below.

3. EoS with Induced Surface Tension

In order to overcome the difficulties of the quantum VdW
EoS at high particle number densities we suggest the
following EoS

p = pid(T, ⌫1) � Pint 1(T, nid 1) , (28)
⌃ = Rp [pid(T, ⌫2) � Pint 2(T, nid 2)] , (29)
⌫1 = µ � V0 p � S0 ⌃ + U1(T, nid 1) , (30)
⌫2 = µ � V0 p � ↵S0 ⌃ + U2(T, nid 2) , (31)

where nid A ⌘ @pid(T,⌫A)
@ ⌫A

with A = {1; 2}, S0 =

4⇡R

2
p denotes the proper surface of the hard-core vol-

ume V0. Eq. (28) is an analog of Eq. (1), while the
equation for the induced surface tension coefficient ⌃

(29) was first introduced for the Boltzmann statistics in
[27]. The system (28)-(31) is a quantum generalization
of the Boltzmann EoS in the spirit of work [7]. As it
was argued above the temperature dependent effective
potentials considered in [33] may lead to an unphysi-
cal behavior at low temperatures and, hence, below we
would like to study this problem in details. Also below
we will show what is a principal difference of the EoS
(28)-(31) with the second way to include the hard-core
repulsion in quantum systems discussed in Ref. [33].

The quantity ⌃ defined by (29) is the surface part of
the hard-core repulsion [25]. As it will be shown later,
representing the hard-core repulsion in pressure (28) in
two terms, namely via �V0p and �S0⌃, instead of a
single term �4V0p as it is done in the quantum VdW
EoS, has great advantages and allows one to go beyond
the VdW approximation.

Evidently, the self-consistency conditions for the IST
EoS are similar to Eqs. (4) and (5) (A = {1; 2})

nid A

@UA(T, nid A)

@ nid A

=

@Pint A(T, nid A)

@ nid A

, (32)
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with the coefficients a

Q,IST
k which are T and n2 depen-

dent. For the interaction pressure Pint 1(T, nid 1) which
is expandable in terms of the density n1, Eq. (47) can
be used to estimate the full quantum virial coefficients of
higher orders. Of course, Eq. (46) is not the traditional
virial expansion, but the fact that it can be exactly ob-
tained from the grand canonical ensemble formulation of
the quantum version of the IST EoS for the third, the
fourth and higher order virial coefficients is still remark-
able.

4.2. True quantum virial coefficients

Now we consider an example on how to employ the re-
sults (46)-(48) to estimate the true virial coefficients at
low densities and at sufficiently high temperature which
provide the convergence of virial expansion (46). Ap-
parently, in this case one can expand the density n2 '
B1n1(1+B2n1) in powers of the density n1. From our
above treatment of the low density limit e

⌫2�⌫1
T ' 1 it

is clear that B1 = 1. Substituting this expansion for
n2 into Eqs. (46) and (47) and keeping only the terms
up to n

2
1 one can get the true quantum virial coefficients

a

Q,tot
k as

a

Q,tot
2 = V0 + a

(0)
2 + 3V0B1 = 4V0 + a

(0)
2 , (49)

a

Q,tot
3 ' 13V

2
0 + 3V0B2 + 5V0a

(0)
2 + a

(0)
3 , (50)

a

Q,tot
k�3 '

kX

l=1

C

(k)
l + 3V0B1

k�1X

l=1

C

(k�1)
l l

+3V0B1

k�2X

l=1

C

(k�2)
l


3

2

l(l + 1)V0B1 + B2

�
. (51)

and replace the coefficients a

Q,IST
k in Eq. (46) with

the true quantum virial coefficients a

Q,tot
k which de-

pend on T only. Note that an expression for the second
virial coefficient a

Q,tot
2 is exact, while the expressions

for the higher order virial coefficients are the approxi-
mated ones, which, nevertheless, at high values of tem-
perature are rather accurate. Considering the limit of
high temperatures which allows one to ignore the quan-
tum corrections in Eqs. (49) and (50), one can find the
coefficients B1 = 1 exactly and B2 ' [7 � 6↵]V0 ap-
proximately by comparing the expressions (49) and (50)
with the corresponding virial coefficients of Boltzmann
gas in Eq. (36). Substituting the obtained expressions
for B1 and B2 coefficients into Eq. (51) one gets the
approximate formula for higher order virial coefficients

a

Q,tot
k�3 :

a

Q,tot
k�3 '

kX

l=1

C

(k)
l + 3V0

k�1X

l=1

C

(k�1)
l l

+ 3V

2
0

k�2X

l=1

C

(k�2)
l


3

2

l(l + 1) + (7 � 6↵)

�
.(52)

Comparing Eq. (52) for the IST EoS and Eq. (26) for
the VdW EoS one can see that the first sum on the right
hand side of (52) is identical to the expression for the
VdW quantum virial coefficients with the excluded vol-
ume b = 4V0 replaced by the proper volume V0. Ap-
parently, the other two sums on the right hand side of
(52) are the corrections due to induced surface tension
coefficient.

Note that it is not difficult to get the exact expressions
for the third or the fourth virial coefficients a

Q,tot
k by

inserting the higher order terms of the expansion n2(n1)

in power of density n1 into Eqs. (46) and (47), although
comparing the coefficients in front of B1 and B2 in the
last sum of Eq. (51), one can see that even for l = 1 the
coefficient staying before B1 is essentially larger than the
one staying before B2. This means that at low densities
the role of B2 is an auxiliary one, if ↵ is between 1 and
1.5.
4.3. Virial expansion for compressible spheres

It is interesting that the k-th term 1
[1�3 V0 n2]k

[n1]
k

[1�V0 n1]
k

in the sum (44) allows for a non-trivial interpretation.
Comparing Eq. (17) and Eq. (44) and recalling the fact
that the particle number density n1 is proportional to
the number of spin-isospin configurations dp, one can
introduce an effective number of such configurations as
d

eff
p =

dp

1�3V0n2
with simultaneous replacement of V0

by the effective proper volume V

eff
0 = V0 (1�3V0n2)

in the term [1 � V0n1] on the right hand side of (44).
Then at high densities the effective number of spin-
isospin configurations d

eff
p  ↵ dp

↵�1
can be sizably larger

than dp, while the effective proper volume V

eff
0 can be

essentially smaller than V0 (i.e. such effective particles
are compressible), if the coefficient ↵ > 1 is close to 1.
Moreover, one can also establish an equivalent virial ex-
pansion of pressure (44) in terms of n1

(1�3V0n2)
powers.

Then instead of the coefficients a

Q,IST
k (47) one would

get

ã

Q,IST
k =

kX

l=1

(k � 1)!

(l � 1)!(k � l)!

h
V

eff
0

ik�l

a

(0)
l , (53)

which shows that at high densities the contributions
of low order virial coefficients a

(0)
l into the coefficient
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with the coefficients a

Q,IST
k which are T and n2 depen-

dent. For the interaction pressure Pint 1(T, nid 1) which
is expandable in terms of the density n1, Eq. (47) can
be used to estimate the full quantum virial coefficients of
higher orders. Of course, Eq. (46) is not the traditional
virial expansion, but the fact that it can be exactly ob-
tained from the grand canonical ensemble formulation of
the quantum version of the IST EoS for the third, the
fourth and higher order virial coefficients is still remark-
able.

4.2. True quantum virial coefficients

Now we consider an example on how to employ the re-
sults (46)-(48) to estimate the true virial coefficients at
low densities and at sufficiently high temperature which
provide the convergence of virial expansion (46). Ap-
parently, in this case one can expand the density n2 '
B1n1(1+B2n1) in powers of the density n1. From our
above treatment of the low density limit e

⌫2�⌫1
T ' 1 it

is clear that B1 = 1. Substituting this expansion for
n2 into Eqs. (46) and (47) and keeping only the terms
up to n

2
1 one can get the true quantum virial coefficients

a

Q,tot
k as

a

Q,tot
2 = V0 + a

(0)
2 + 3V0B1 = 4V0 + a

(0)
2 , (49)

a

Q,tot
3 ' 13V

2
0 + 3V0B2 + 5V0a

(0)
2 + a

(0)
3 , (50)

a

Q,tot
k�3 '

kX

l=1

C

(k)
l + 3V0B1

k�1X

l=1

C

(k�1)
l l

+3V0B1

k�2X

l=1

C

(k�2)
l


3

2

l(l + 1)V0B1 + B2

�
. (51)

and replace the coefficients a

Q,IST
k in Eq. (46) with

the true quantum virial coefficients a

Q,tot
k which de-

pend on T only. Note that an expression for the second
virial coefficient a

Q,tot
2 is exact, while the expressions

for the higher order virial coefficients are the approxi-
mated ones, which, nevertheless, at high values of tem-
perature are rather accurate. Considering the limit of
high temperatures which allows one to ignore the quan-
tum corrections in Eqs. (49) and (50), one can find the
coefficients B1 = 1 exactly and B2 ' [7 � 6↵]V0 ap-
proximately by comparing the expressions (49) and (50)
with the corresponding virial coefficients of Boltzmann
gas in Eq. (36). Substituting the obtained expressions
for B1 and B2 coefficients into Eq. (51) one gets the
approximate formula for higher order virial coefficients

a

Q,tot
k�3 :

a

Q,tot
k�3 '

kX

l=1

C

(k)
l + 3V0

k�1X

l=1

C

(k�1)
l l

+ 3V

2
0

k�2X

l=1

C

(k�2)
l


3

2

l(l + 1) + (7 � 6↵)

�
.(52)

Comparing Eq. (52) for the IST EoS and Eq. (26) for
the VdW EoS one can see that the first sum on the right
hand side of (52) is identical to the expression for the
VdW quantum virial coefficients with the excluded vol-
ume b = 4V0 replaced by the proper volume V0. Ap-
parently, the other two sums on the right hand side of
(52) are the corrections due to induced surface tension
coefficient.

Note that it is not difficult to get the exact expressions
for the third or the fourth virial coefficients a

Q,tot
k by

inserting the higher order terms of the expansion n2(n1)

in power of density n1 into Eqs. (46) and (47), although
comparing the coefficients in front of B1 and B2 in the
last sum of Eq. (51), one can see that even for l = 1 the
coefficient staying before B1 is essentially larger than the
one staying before B2. This means that at low densities
the role of B2 is an auxiliary one, if ↵ is between 1 and
1.5.
4.3. Virial expansion for compressible spheres

It is interesting that the k-th term 1
[1�3 V0 n2]k

[n1]
k

[1�V0 n1]
k

in the sum (44) allows for a non-trivial interpretation.
Comparing Eq. (17) and Eq. (44) and recalling the fact
that the particle number density n1 is proportional to
the number of spin-isospin configurations dp, one can
introduce an effective number of such configurations as
d

eff
p =

dp

1�3V0n2
with simultaneous replacement of V0

by the effective proper volume V

eff
0 = V0 (1�3V0n2)

in the term [1 � V0n1] on the right hand side of (44).
Then at high densities the effective number of spin-
isospin configurations d

eff
p  ↵ dp

↵�1
can be sizably larger

than dp, while the effective proper volume V

eff
0 can be

essentially smaller than V0 (i.e. such effective particles
are compressible), if the coefficient ↵ > 1 is close to 1.
Moreover, one can also establish an equivalent virial ex-
pansion of pressure (44) in terms of n1

(1�3V0n2)
powers.

Then instead of the coefficients a

Q,IST
k (47) one would

get

ã

Q,IST
k =

kX

l=1

(k � 1)!

(l � 1)!(k � l)!

h
V

eff
0

ik�l

a

(0)
l , (53)

which shows that at high densities the contributions
of low order virial coefficients a

(0)
l into the coefficient
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with the coefficients a

Q,IST
k which are T and n2 depen-

dent. For the interaction pressure Pint 1(T, nid 1) which
is expandable in terms of the density n1, Eq. (47) can
be used to estimate the full quantum virial coefficients of
higher orders. Of course, Eq. (46) is not the traditional
virial expansion, but the fact that it can be exactly ob-
tained from the grand canonical ensemble formulation of
the quantum version of the IST EoS for the third, the
fourth and higher order virial coefficients is still remark-
able.

4.2. True quantum virial coefficients

Now we consider an example on how to employ the re-
sults (46)-(48) to estimate the true virial coefficients at
low densities and at sufficiently high temperature which
provide the convergence of virial expansion (46). Ap-
parently, in this case one can expand the density n2 '
B1n1(1+B2n1) in powers of the density n1. From our
above treatment of the low density limit e

⌫2�⌫1
T ' 1 it

is clear that B1 = 1. Substituting this expansion for
n2 into Eqs. (46) and (47) and keeping only the terms
up to n

2
1 one can get the true quantum virial coefficients

a

Q,tot
k as

a

Q,tot
2 = V0 + a

(0)
2 + 3V0B1 = 4V0 + a

(0)
2 , (49)

a

Q,tot
3 ' 13V

2
0 + 3V0B2 + 5V0a

(0)
2 + a

(0)
3 , (50)

a

Q,tot
k�3 '

kX

l=1

C

(k)
l + 3V0B1

k�1X

l=1

C

(k�1)
l l

+3V0B1

k�2X

l=1

C

(k�2)
l


3

2

l(l + 1)V0B1 + B2

�
. (51)

and replace the coefficients a

Q,IST
k in Eq. (46) with

the true quantum virial coefficients a

Q,tot
k which de-

pend on T only. Note that an expression for the second
virial coefficient a

Q,tot
2 is exact, while the expressions

for the higher order virial coefficients are the approxi-
mated ones, which, nevertheless, at high values of tem-
perature are rather accurate. Considering the limit of
high temperatures which allows one to ignore the quan-
tum corrections in Eqs. (49) and (50), one can find the
coefficients B1 = 1 exactly and B2 ' [7 � 6↵]V0 ap-
proximately by comparing the expressions (49) and (50)
with the corresponding virial coefficients of Boltzmann
gas in Eq. (36). Substituting the obtained expressions
for B1 and B2 coefficients into Eq. (51) one gets the
approximate formula for higher order virial coefficients

a

Q,tot
k�3 :

a

Q,tot
k�3 '

kX

l=1

C

(k)
l + 3V0

k�1X

l=1

C

(k�1)
l l

+ 3V

2
0

k�2X

l=1

C

(k�2)
l


3

2

l(l + 1) + (7 � 6↵)

�
.(52)

Comparing Eq. (52) for the IST EoS and Eq. (26) for
the VdW EoS one can see that the first sum on the right
hand side of (52) is identical to the expression for the
VdW quantum virial coefficients with the excluded vol-
ume b = 4V0 replaced by the proper volume V0. Ap-
parently, the other two sums on the right hand side of
(52) are the corrections due to induced surface tension
coefficient.

Note that it is not difficult to get the exact expressions
for the third or the fourth virial coefficients a

Q,tot
k by

inserting the higher order terms of the expansion n2(n1)

in power of density n1 into Eqs. (46) and (47), although
comparing the coefficients in front of B1 and B2 in the
last sum of Eq. (51), one can see that even for l = 1 the
coefficient staying before B1 is essentially larger than the
one staying before B2. This means that at low densities
the role of B2 is an auxiliary one, if ↵ is between 1 and
1.5.
4.3. Virial expansion for compressible spheres

It is interesting that the k-th term 1
[1�3 V0 n2]k

[n1]
k

[1�V0 n1]
k

in the sum (44) allows for a non-trivial interpretation.
Comparing Eq. (17) and Eq. (44) and recalling the fact
that the particle number density n1 is proportional to
the number of spin-isospin configurations dp, one can
introduce an effective number of such configurations as
d

eff
p =

dp

1�3V0n2
with simultaneous replacement of V0

by the effective proper volume V

eff
0 = V0 (1�3V0n2)

in the term [1 � V0n1] on the right hand side of (44).
Then at high densities the effective number of spin-
isospin configurations d

eff
p  ↵ dp

↵�1
can be sizably larger

than dp, while the effective proper volume V

eff
0 can be

essentially smaller than V0 (i.e. such effective particles
are compressible), if the coefficient ↵ > 1 is close to 1.
Moreover, one can also establish an equivalent virial ex-
pansion of pressure (44) in terms of n1

(1�3V0n2)
powers.

Then instead of the coefficients a

Q,IST
k (47) one would

get

ã

Q,IST
k =

kX

l=1

(k � 1)!

(l � 1)!(k � l)!

h
V

eff
0

ik�l

a

(0)
l , (53)

which shows that at high densities the contributions
of low order virial coefficients a

(0)
l into the coefficient
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Already from the virial expansion (36) one can see
that the case ↵ = 1 recovers the VdW EoS with the
hard-core repulsion. If, in addition, the mean-field po-
tentials are the same, i.e. U2 = U1 and, consequently,
Pint 2 = Pint 1, then one finds that ⌫2 = ⌫1 and ⌃ =

Rp p(T, ⌫1). In this case the term V0 p+S0 ⌃ ⌘ 4V0 p

exactly corresponds to the VdW hard-core repulsion. If,
however, U2 6= U1, but both mean-field potentials are
restricted from above, then the model can deviate from
the VdW EoS at low temperatures only, while at high
temperatures it again corresponds to the VdW EoS. For
the case U2 < U1 this can be easily seen from Eqs. (33)
and (34) for the case e

⌫2�⌫1
T ' 0, if one sets ↵ = 1.

Then using the same logic as in deriving Eq. (37), one
can find that ⌃ ⌧ Rp pid(T, ⌫1) and, hence, the ef-
fective chemical potential ⌫1 acquires the form (38). In
other words, at low T the surface tension effect becomes
negligible and the IST EoS corresponds to the proper
volume approximation, if e

⌫2�⌫1
T ' 0.

Finally, if the inequality U2 > U1 is valid, then at
low T an expansion (33) has to be applied to the distri-
bution function �id(k, T, ⌫1) instead of �id(k, T, ⌫2)

and then one arrives at the unrealistic case, since ⌃ �
Rp pid(T, ⌫1). In this case the hard-core repulsion
would be completely dominated by the induced surface
tension term and, hence, even the second virial coeffi-
cient would not correspond to the excluded volume of
particles.

4. Going beyond VdW approximation

Let us closely inspect the IST EoS and show explicitly its
major differences from the VdW one. For such a purpose
in this section we analyze its effective and true virial
expansions and discuss somewhat unusual properties of
the entropy density.
4.1. Effective virial expansion

First we analyze the particle densities n1(T, ⌫1) ⌘
@p(T,⌫1)

@ µ
and ñ2(T, ⌫2) ⌘ R

�1
p

@⌃(T,⌫2)
@ µ

. For this pur-
pose we differentiate Eqs. (28) and (29) with respect to
µ and apply the self-consistency conditions (32)

n1 = nid 1


1 � V0n1 � S0

@⌃

@µ

�
, (39)

@⌃

@µ

= Rp nid 2


1 � V0n1 � ↵S0

@⌃

@µ

�
. (40)

Expressing @⌃
@µ

from Eq. (40) and substituting it
into (39), one finds the densities of particle number

(ñ2(T, ⌫2) ⌘ n2(1 � V0n1))

n1 =

nid 1 (1 � 3 V0 n2)

1 + V0 nid 1 (1 � 3 V0 n2)
, (41)

n2 =

nid 2

1 + ↵ 3 V0 nid 2
, (42)

where we used the relation RpS0 = 3V0 for hard
spheres. From Eq. (42) for n2 one finds that for ↵ > 1

the term (1�3 V0 n2) staying above is always positive,
since, taking the limit nid 2 ! 1 in Eq. (42) one finds
the limiting density of max{n2} = [3↵V0]

�1. There-
fore, irrespective of the value of nid 2 � 0 in the limit
nid 1V0 � 1 one finds that max{n1} = V

�1
0 . This

is another way to prove that the limiting density of the
IST EoS corresponds to the proper volume limit, since
at high densities it is four times higher than the one of
the VdW EoS. Writing the particle number density nid 1

from Eq. (41) as

nid 1 =

n1

(1 � V0 n1) (1 � 3 V0 n2)
, (43)

one can get the formal virial-like expansion for the IST
pressure pid(T, ⌫1) (28)

pid(T, ⌫1)

T

=

1X

k=1

a

(0)
k

[1 � 3 V0 n2]
k

[n1]
k

[1 � V0 n1]
k

, (44)

where the expressions for the coefficients a

(0)
k are given

by Eqs. (9)-(16). This result allows us to formally write
an expansion

pid(T, ⌫1)

T

⌘
1X

k=1

a

(0),IST
k

[n1]
k

[1 � V0 n1]
k

(45)

with the coefficients a

(0),IST
k =

a
(0)
k

[1�3 V0 n2]k
which de-

pend not only on T , but also on n2. The expansions
(44) and (45) are the generalizations of the ones used for
EoS of hard discs [31] and hard spheres [32].

Similarly to deriving Eq. (26), from (45) one can
get the quantum virial expansion for IST pressure
pid(T, ⌫1)

pid(T, ⌫1) = T

1X

k=1

a

Q,IST
k n

k
1 , (46)

a

Q,IST
k =

kX

l=1

C

(k)
l

[1 � 3 V0 n2]
l
, (47)

C

(k)
l =

(k � 1)!

(l � 1)!(k � l)!

V

k�l
0 a

(0)
l , (48)
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[33] is unphysical. Thus, despite the claims of author of
Ref. [33] such a generalization of the approach [7] to in-
clude the hard-core repulsion in quantum systems leads
to a problem with the Third Law of thermodynamics.

To end this section we express the traditional virial
coefficients a

Q
k of the quantum VdW gas of Eq. (17) in

terms of the classical excluded volume b and the quan-
tum virial coefficients of point-like particles a

(0)
k . Ex-

panding each denominator in Eq. (17) into a series of
powers of n, one can easily find

pid(T, ⌫) = T

"
n +

1X

k=2

a

Q
k n

k

#
, where (22)

a

Q
2 = b + a

(0)
2 , (23)

a

Q
3 = b

2
+ 2 b a

(0)
2 + a

(0)
3 , (24)

a

Q
4 = b

3
+ 3 b

2
a

(0)
2 + 3 b

1
a

(0)
3 + a

(0)
4 , (25)

a

Q
k = b

k�1
+

kX

l=2

(k � 1)!

(l � 1)!(k � l)!

b

k�l
a

(0)
l . (26)

If the interaction pressure Pint(T, nid(n)) of the model
(1) can be expanded into the Taylor series of particle
number density n at n = 0, then one can obtain the
full quantum virial expansion of this EoS. Note that the
coefficients a

(0)
k for the model (1) depend on tempera-

ture only, while specific features of the EoS are stored
in b and in Pint(T, nid(n)). For example, using the
coefficients b = 3.42 fm3 and Pint(T, n) = aattrn

2

(aattr = 329 MeV· fm3) found in [14] for the quantum
VdW EoS of nuclear matter, one can calculate the full
quantum second virial coefficient of the model as

a

Q,tot
2 = b + a

(0)
2 �

aattr

T

' b +

1

2

5
2
dp


2 ⇡

T mp

� 3
2

�
aattr

T

,

where in the second step of derivation we used the non-
relativistic expression for the cluster integral b

(0)
2 (15).

Taking results from [14], one can find that for nucleons
(dp = 4, mp = 939 MeV) the coefficient a

Q,tot
2 (T ) is

zero at T ' 5.76 MeV and T ' 70.4 MeV, is negative
between these temperatures and then above T ' 70.4

MeV it grows almost linearly with T to a

Q,tot
2 (T =

150 MeV) ' (3.42 + 0.403 � 2.19) fm

3 ' 1.63

fm3 which corresponds to the equivalent hard-core ra-
dius Req ' 0.46 fm at T = 150 MeV. From this es-
timate it is evident that the large value of the equiva-
lent hard-core radius Req for the model [14] is a con-
sequence of the unrealistically large hard-core radius of
nucleons Rn ' 0.59 fm obtained in [14] (also, see a
discussion later), whereas in the most advanced version

of the hadron resonance gas model the hard-core radius
of nucleons is 0.365 fm [24–26] and in the IST EoS of
the nuclear matter this radius is below 0.4 fm [34]. It
is obvious that more realistic attraction than the one
used in [14] would decrease the values of Req and Rn

to physically more adequate ones. Although the explicit
quantum virial expansion (22)-(27) can be used to find
the appropriate attraction in order to cure the problems
of the VdW EoS and extend it to higher particle number
densities and high/low T values, the true solution of this
problem is suggested below.

3. EoS with Induced Surface Tension

In order to overcome the difficulties of the quantum VdW
EoS at high particle number densities we suggest the
following EoS

p = pid(T, ⌫1) � Pint 1(T, nid 1) , (27)
⌃ = Rp [pid(T, ⌫2) � Pint 2(T, nid 2)] , (28)
⌫1 = µ � V0 p � S0 ⌃ + U1(T, nid 1) , (29)
⌫2 = µ � V0 p � ↵S0 ⌃ + U2(T, nid 2) , (30)

where nid A ⌘ @pid(T,⌫A)
@ ⌫A

with A = {1; 2}, S0 =

4⇡R

2
p denotes the proper surface of the hard-core vol-

ume V0. Eq. (27) is an analog of Eq. (1), while the
equation for the induced surface tension coefficient ⌃

(28) was first introduced for the Boltzmann statistics in
[27]. The system (27)-(30) is a quantum generalization
of the Boltzmann EoS in the spirit of work [7]. As it
was argued above the temperature dependent effective
potentials considered in [33] may lead to an unphysi-
cal behavior at low temperatures and, hence, below we
would like to study this problem in details. Also below
we will show what is a principal difference of the EoS
(27)-(30) with the second way to include the hard-core
repulsion in quantum systems discussed in Ref. [33].

The quantity ⌃ defined by (28) is the surface part of
the hard-core repulsion [25]. As it will be shown later,
representing the hard-core repulsion in pressure (27) in
two terms, namely via �V0p and �S0⌃, instead of a
single term �4V0p as it is done in the quantum VdW
EoS, has great advantages and allows one to go beyond
the VdW approximation.

Evidently, the self-consistency conditions for the IST
EoS are similar to Eqs. (4) and (5) (A = {1; 2})

nid A

@UA(T, nid A)

@ nid A

=

@Pint A(T, nid A)

@ nid A

, (31)

The model parameter ↵ > 1 is a switch between the
excluded and proper volume regimes. To demonstrate
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for nucleons it is good approximation

For IST EoS  it is bit more complicated



Figure 1. The temperature dependence of the nucleon-nucleon excluded volume parameter vNN (solid

black line), the proton-proton excluded volume parameter vpp (dashed red line), and the proton-

neutron excluded volume parameter vpn ⌘ 2 vNN � vpp (dashed red line), as calculated within the

relativistic Beth-Uhlenbeck approach for a hard-core potential with the nucleon hard-core radius of

rc = 0.3 fm. The dashed horizontal line shows the prediction of the classical EV model (6) with the

same value of rc = 0.3 fm.

where

�nr(T ;m) =

✓
mT

2⇡

◆3/2

exp
⇣
�m

T

⌘
. (17)

A comparison of the non-relativistic BU-HC result (16) with the classical result (6) provides

an important cross check. For high temperatures the quantum e↵ects in the BU-HC model

become unimportant, thus, the results (16) and (6) should coincide.

B. Calculation results

Figure 1 depicts the temperature dependence of the nucleon-nucleon excluded volume pa-

rameter vNN , calculated using Eq. (14) for the nucleon hard-core radius of rc = 0.3 fm for tem-

peratures up to T = 300 MeV. The temperature dependences of the proton-proton eigenvolume

7

Figure 3. The temperature dependence of the second virial coe�cient a2(T ) of nucleon-nucleon

interaction, calculated within di↵erent approaches. The calculations within the relativistic Beth-

Uhlenbeck approach for the system of nucleons with a hard-core interaction are depicted by the blue

band, which results from the variation of the nucleon hard-core radius in the range 0.25 < rc < 0.30 fm.

The calculations of Ref. [37] within the S-matrix formalism, employing the empirical phase shifts of

NN -scattering, are depicted by the yellow line. The red line depicts the second virial coe�cient of

nucleon-nucleon interaction in the quantum van der Waals model of nuclear matter [52]. Lattice QCD

results for the 2nd virial coe�cient of “baryon-baryon interaction” [38], obtained from simulations at

an imaginary baryochemical potential, are depicted by black symbols with error bars.

fm3 for nucleons [52]. The second virial coe�cient in this QvdW model reads3 a2(T ) = b�a/T .

The temperature dependence of aNN
2 (T ) in the QvdW model is depicted in Fig. 3, red line.

aNN
2 is negative at small temperatures, crosses zero at T = a/b ' 96 MeV, and increases

monotonically at large temperatures. This sign change of aNN
2 (T ) is expected for any system of

interacting particles with short-range repulsion and intermediate range attraction. At the same

time, continued increase of aNN
2 (T ) at high temperatures in the QvdW model appears to be at

odds with results of the BU-HC formalism. This takes place because of the large, temperature

3 Once again, here we neglect the small ideal Fermi gas contribution to a2(T ).
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Here the range of the QIST EoS applicability is given by the maximal packing fraction hmax of the
model. Assuming that the maximal packing fraction of the QIST EoS is hmax = 0.2, i.e. it is similar
to the Boltzmann version of the IST EoS [17,18], one gets the following inequality on the nucleon
hard-core radius RN  0.4 fm and, hence, one finally obtains 0.28 fm  RN  0.4 fm.

The quantum virial expansion developed in [19] both for the quantum VdW and QIST EoS allows
us to obtain even a narrower range of values which is consistent with the S-matrix approach [37] to
the EoS of the gas of nucleons at temperatures above 100 MeV. For an extended discussion see also
Ref. [38]. In particular, the quantum second virial coefficient aS

2 (T) of a nucleon gas as obtained from
realistic S-matrix approach provides approximately the following inequalities [37,38]

0.5 fm3  aS
2 (T)  1.25 fm3 for 100 MeV  T  170 MeV . (18)

These inequalities correspond to the conditions 0.31 fm  RN  0.42 fm, if one uses the classical
definition of the HCR. It is interesting that these inequalities are similar to the ones found above for
the QIST EoS. Using the results of Ref. [19] the second aIST

2 and third aIST
3 virial coefficients for the

repulsive part of the QIST EoS for nucleons can be cast as

aIST
2 = 4V0 + a(0)2 , aIST

3 ' [16 � 18(a � 1)]V2
0 + 5V0a(0)2 + a(0)3 , (19)

where the second a(0)2 and the third a(0)3 virial coefficients of point-like nucleons which in the
non-relativistic approximation for fermions can be written as
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Introducing an effective second virial coefficient of nucleons ae f f
2 (nN) ⌘ aIST

2 + nN aIST
3 which depends

on particle number density of nucleons nN and assuming that the nucleonic contribution to the HRGM
is given by the repulsive part of the QIST EoS (9), one can use the effective second virial coefficient
ae f f

2 (nN) to constrain the values of HCR further. Our analysis shows that for the nucleon densities
below nN ' 3n0 = 0.48 fm�3 the fourth and higher virial coefficients are not important and, hence, we
can require that up to this nucleon density the coefficient ae f f

2 (nN) obeys the constraint (18). This leads
to the follows range of RN values: RN 2 [0.275; 0.36] fm. In other words, for such a range of values of
the nucleonic HCR not only the second, but also the third virial coefficient of nucleons will provide the
fulfillment of the constraint (18).

At first glance this result may look surprising, since one does not see any important role of the
quantum third virial coefficient. A close inspection shows that due to the small value of the coefficient
which enters the expression for a(0)3 , the quantum effects are important at temperatures below 20 MeV,
while at T � 100 MeV the coefficients a(0)3 and a(0)2 are small, since wN(T = 100 MeV) ' 1 and it is a
decreasing function of T. As a result at T � 100 MeV the values of the coefficients aIST

2 and aIST
3 are

defined by the HCR of nucleons and the parameter a.
However, when the QIST EoS is required to simultaneously fulfill the gravitational mass-radius

relation of neutron stars and the proton flow constraint, one finds somewhat larger values of the
HCR of nucleons, namely RN 2 [0.42; 0.47] fm [36]. Note that within the recent excluded nucleon
volume generalization of the relativistic meanfield model "DD2" by Typel [39] even larger values of
the HCR of nucleons were used in the description of neutron star phenomenology such as mass-radius
relations [40], moment of inertia [41], tidal deformabilities [41,42] and cooling [43]. The "DD2 p40"
EoS used in these works would correspond to a nucleon HCR of RN = 0.62 fm which is at the
very limit of what is compatible with the recent constraint on the compactness of neutron stars
stemming from the gravitational wave signal measured for the inspiral phase of the neutron star
merger GW170817 [44]. These results indicate that the repulsive core of the nucleon-nucleon interaction
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3 are
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relation of neutron stars and the proton flow constraint, one finds somewhat larger values of the
HCR of nucleons, namely RN 2 [0.42; 0.47] fm [36]. Note that within the recent excluded nucleon
volume generalization of the relativistic meanfield model "DD2" by Typel [39] even larger values of
the HCR of nucleons were used in the description of neutron star phenomenology such as mass-radius
relations [40], moment of inertia [41], tidal deformabilities [41,42] and cooling [43]. The "DD2 p40"
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merger GW170817 [44]. These results indicate that the repulsive core of the nucleon-nucleon interaction

very small for 
T> 20 MeV!
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one can study whether it is compatible with S-matrix approach



Figure 1. The temperature dependence of the nucleon-nucleon excluded volume parameter vNN (solid

black line), the proton-proton excluded volume parameter vpp (dashed red line), and the proton-

neutron excluded volume parameter vpn ⌘ 2 vNN � vpp (dashed red line), as calculated within the

relativistic Beth-Uhlenbeck approach for a hard-core potential with the nucleon hard-core radius of

rc = 0.3 fm. The dashed horizontal line shows the prediction of the classical EV model (6) with the

same value of rc = 0.3 fm.
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A comparison of the non-relativistic BU-HC result (16) with the classical result (6) provides

an important cross check. For high temperatures the quantum e↵ects in the BU-HC model

become unimportant, thus, the results (16) and (6) should coincide.

B. Calculation results

Figure 1 depicts the temperature dependence of the nucleon-nucleon excluded volume pa-

rameter vNN , calculated using Eq. (14) for the nucleon hard-core radius of rc = 0.3 fm for tem-

peratures up to T = 300 MeV. The temperature dependences of the proton-proton eigenvolume
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For T > 50 MeV the 3-rd virial coefficient does not play ANY role  in 
the nucleon gas! Also there is range of R_N values [0.3; 0.36] fm

Nucleon gas EOS

Role of 3-rd Virial Coefficient
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of the star and its macroscopic properties. Integrating TOV
equations from the center r = 0 to the surface of the star
r = R where pressure p = 0 and the total mass m = M

NS

we
account for the boundary conditions. As NS are electrically
neutral protons and electrons should be equal in numbers.

As shown in table 1, parameters which were taken from
the description of the A+A collisions can not reproduce the
observed NS mass. Baryon radius lower than 0.4 fm makes
the EoS very soft. This is due to the fact that adding the at-
traction term leads to the decrease of system pressure and the
increase of radii is necessary to reproduce the same data as in
the model without the attraction term. Therefore, the new sets
of parameters were chosen (see table 1) according to the cri-
terion of reproduction astrophysical constraints, e.g. maximal
observed NS mass (Antoniadis et al. 2013), flow constraints
taken from high-energy nuclear physics data (Danielewicz
et. al. 2002) and a maximization of the causality range of the
model. In addition, the value of the C parameter was found
according to the criterion of reproduce the properties of nu-
clear matter at the ground state.

Figure 1 presents calculated mass-radius diagram for the
IST model with ↵=1.245, R

n,p=0.476 fm and C=0.067 (red
curve). Such values of the parameters provide the best agree-
ment with all astrophysical constraints. For this set of values
the maximum mass of static neutron star is 2.217 M� (see
table 1). The above values were found by varying the model
parameters – C, R

n,p and ↵ in such way that their limiting
values are able to describe the maximal observed NS mass,
to provide a description of the nuclear matter properties at
ground state, to define a maximal range of the model causal-
ity and to reproduce the flow constraints. The lower limit of
the values of these parameters corresponds to the green curve
in Figure 1, and the highest value allowable corresponds to the
red curve in Figure 1 (see also table 1). Thus, all the parame-
ters that lead to models with values in the range between the
green and red curves on Figure 1 are in full agreement with
all the existing constraints, as such these values can be used
to describe the properties of strongly interacting matter in NS
and A+A collisions.

The present model is very sensitive to the hard-core radius,
which makes the EoS more stiffer with its increase, and ↵
parameter that contributes significantly at high densities af-
fecting the upper part of the mass-radius relation. As one can
see from Figure 2 (upper panel) the variation of ↵ from 1.045
to 2.145 leads to a shift of the maximum of mass-radius curve.
All other parameters were fixed to be equal to R

n,p=0.476 fm
and C=0.067. The value ↵=1.045 does not satisfy the causal-
ity constraint depicted in light grey on Figure 2. The value of
↵ which could reproduce the heaviest detected NS is below
1.545. The effect of varying hard-core radius of baryons is
shown on Figure 2 (lower panel). To reproduce the observed
compact stars the EoS should be quite stiff, but at the same
time, high R

n,p value will lead to problems with causality,
when the speed of sound could exceeds the speed of light.
The value R

n,p '0.43 fm (all other parameters was fixed to
the values from table 1 for curve A) is found to be the lowest
one which could satisfy all astrophysical constrains.

The flow constraint taken from high-energy nuclear colli-
sions for symmetric baryon matter (Danielewicz et. al. 2002)
corresponds to the grey shaded area on Figure (3). To satisfy
it the EoS requires to be rather soft at n = (2 - 5)n0 which
puts very strong limitations on the existing model of strongly
interacting matter. From Figure 3 one can see that the area be-
tween the red and the green curves which corresponds to the

FIG. 1.— Gravitational mass-radius relation for IST EoS with two sets
of model parameters: red curve represents the one which provides the best
agreement with all astrophysical constraints; and the green one corresponds
to the limiting values of the model parameters that satisfy existing con-
straints. The additional curves correspond to the following EoS models:
blue curve represents BSk20 (Potekhin et al. 2013); brown curve corre-
sponds to the WWF2 (Wiringa et al. 1988); and black curve represents SLy
(Douchin & Haensel 2001). The horizontal pink line defines the observa-
tional value of the most massive observed neutron star 2.01(4) M� (Anto-
niadis et al. 2013). The light grey region is excluded by causality constraint,
R > 2.9GM/c

2, and the dark grey region by the requirement of the finite
pressure R > 2.25GM/c

2 (Lattimer & Prakash 2007).

FIG. 2.— Effects of varying ↵ parameter (upper panel) and hard-core radius
of the baryons (lower panel). All other parameters are fixed to the values that
correspond to the red curve in table 1.
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TABLE 1
VALUES OF THE MODEL PARAMETERS OF THE IST EOS FOUND FOR THE

TWO LIMITING CASES OF NEUTRON STARS WHICH SATISFY ALL
CONSTRAINTS AND THE PARAMETERS FOUND FROM THE DESCRIPTION

OF A+A COLLISIONS (SAGUN ET. AL. 2017).

baryon ↵ C max
radius (fm) M

NS

/M�
red curve 0.476 1.245 0.067 2.217

on Fig. (1)
green curve 0.425 1.06 0.062 2.166
on Fig. (1)

A+A collisions 0.355 1.245 0.067 1.544

FIG. 3.— Dependence of the pressure p on the baryon density n

B

for
the defined set of parameters of the IST model. The red and green curves
correspond to the curves of the same colours in table 1.

FIG. 4.— Adiabatic index of the IST EoS versus baryon density.

curves of the same colour on Figure 1 is in good agreement
with the nuclear collisions.

One of the most prominent parameter which characterizes
the physical properties of matter in different regions of the
NS interior is an adiabatic index � = nB

p

dp

dnB
(Haensel et.

al. 2002; Potekhin et al. 2013). This dimensionless parame-
ter determines the changes of pressure p associated with the
changes of the baryon density n

B

in the star. The value of
adiabatic index characterizes the stiffness of the EoS at given
density and can shed a light on the physical processes in-
side the NS. Analysis of � allows us to define three layers
inside the NS: outer zone, outer-core and inner-core regions
(Haensel et. al. 2002). In the outer zone region, that has the
lowest density over n

B

⇠ 0.5n0, the properties are almost in-
dependent on the density, while � ' 1.7. Dependence of the
adiabatic index on the baryon density is shown on Fig. 4. It
is seen that for densities higher than 7 · 1013 g cm-3, where
� ' 1.75, adiabatic index starts to monotonically increase.
Such a behaviour corresponds to compression of matter due to
transition to the outer-core region of NS. At n

B

⇠ 2n0 there
is another transition to the inner-core. In comparison to the
RMF models, e.g. (Potekhin et al. 2013), which demonstrate
a sudden jump of the adiabatic index � at the transition region
from outer to inner core, the behaviour of this parameter in
the present EoS is more smooth.

SUMMARY AND CONCLUSIONS

Using a novel EoS within the IST between the constituents
we calculated the properties of the NS at zero-temperature
limit. The presented EoS is a thermodynamically self-
consistent generalisation of the IST model based on the virial
expansion for the multicomponent mixture with the hard-core
repulsion. A surface tension induced by particle interaction
is a principally new element of that approach which enables
us to go beyond the Van der Waals limit. It was shown that
the present EoS can be successfully applied to the description
of the hadron multiplicities measured in A+A collisions, to
studies of the nuclear matter phase diagram and to modelling
of the NS interiors. Solving TOV equations, we obtained the
mass-radius relations for the neutron stars. The found val-
ues of the hard-core radius of baryons between 0.425 fm and
0.476 fm, ↵ 2 (1.06-1.245) and pressure-baryon density de-
pendence are in full agreement with A+A collisions. These
results allow us to conclude that description of the compact
stars with the model, used to the description of the nuclear
collision physics data, provide with a strong constraint on the
attraction contribution in EoS at zero temperature. The IST
EoS gives a possibility to describe the strongly interacting
matter phase diagram in a wide range of its thermodynamic
parameters which helps to create a solid bridge between the
astrophysical and high-energy nuclear physics data.
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changes of the baryon density n

B

in the star. The value of
adiabatic index characterizes the stiffness of the EoS at given
density and can shed a light on the physical processes in-
side the NS. Analysis of � allows us to define three layers
inside the NS: outer zone, outer-core and inner-core regions
(Haensel et. al. 2002). In the outer zone region, that has the
lowest density over n

B

⇠ 0.5n0, the properties are almost in-
dependent on the density, while � ' 1.7. Dependence of the
adiabatic index on the baryon density is shown on Fig. 4. It
is seen that for densities higher than 7 · 1013 g cm-3, where
� ' 1.75, adiabatic index starts to monotonically increase.
Such a behaviour corresponds to compression of matter due to
transition to the outer-core region of NS. At n

B

⇠ 2n0 there
is another transition to the inner-core. In comparison to the
RMF models, e.g. (Potekhin et al. 2013), which demonstrate
a sudden jump of the adiabatic index � at the transition region
from outer to inner core, the behaviour of this parameter in
the present EoS is more smooth.

SUMMARY AND CONCLUSIONS

Using a novel EoS within the IST between the constituents
we calculated the properties of the NS at zero-temperature
limit. The presented EoS is a thermodynamically self-
consistent generalisation of the IST model based on the virial
expansion for the multicomponent mixture with the hard-core
repulsion. A surface tension induced by particle interaction
is a principally new element of that approach which enables
us to go beyond the Van der Waals limit. It was shown that
the present EoS can be successfully applied to the description
of the hadron multiplicities measured in A+A collisions, to
studies of the nuclear matter phase diagram and to modelling
of the NS interiors. Solving TOV equations, we obtained the
mass-radius relations for the neutron stars. The found val-
ues of the hard-core radius of baryons between 0.425 fm and
0.476 fm, ↵ 2 (1.06-1.245) and pressure-baryon density de-
pendence are in full agreement with A+A collisions. These
results allow us to conclude that description of the compact
stars with the model, used to the description of the nuclear
collision physics data, provide with a strong constraint on the
attraction contribution in EoS at zero temperature. The IST
EoS gives a possibility to describe the strongly interacting
matter phase diagram in a wide range of its thermodynamic
parameters which helps to create a solid bridge between the
astrophysical and high-energy nuclear physics data.
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tic interaction allowing one to go beyond the Van der Waals
limit should be added. The phenomenological approach about
how to add attraction between the constituents is related to
the introduction of the additional density dependent potential
U(n

id

) to the nucleon energy (Rischke et. al. 1988) in the
form of

U(n
id

) = -C2
d

n
1
3
id

⌘ -Ck , (5)

where C = C2
d

�
g

6⇡2

� 1
3 . Following Bugaev & Gorenstein

(1989), the power of density was chosen to be equal to 1
3 that

leads to the dimensionless C2
d

. As the repulsion and attraction
play the opposite roles, the U(n

id

) term is introduced with
the minus sign in the expression of the pressure of the system.

Condition of thermodynamic consistency of model with the
mean field interaction requires the special relation between
the interaction pressure and potential (Rischke et. al. 1988;
Bugaev & Gorenstein 1989; Bugaev et. al. 2017):

@p
int

@n
id

=n
id

@U(n
id

)

@n
id

(6)

and

p
int

(n
id

) = n
id

U(n
id

)-

Z
nid

0
dn U(n) = -

gCk4

24⇡2
. (7)

Such a generalization of the EoS corresponds to the substitu-
tion of the pressure with p(m, µ) ! p(m, µ - U(n

id

)) +
p
int

(n
id

). This parametrization provides causal behaviour
of the model EoS at high densities.

We considered the system which consists of neutrons, pro-
tons with the same value of the hard-core radius R

n

= R
p

=
R
n,p and the noninteracting point-like electrons (R

e

= 0)
with pressure p

id

(m
e

,µ
e

), physical mass m
e

and chemical
potential µ

e

. Assumption about equal radii of neutrons and
protons was justified in (Bugaev et al. 2016). According to
the previous findings, the best description of the experimen-
tal data corresponds to the baryon radius values laying in the
range between 0.3 fm and 0.5 fm (Bugaev et al. 2016; Sagun
et. al. 2017; Andronic et. al. 2017). The Coulomb inter-
action of electrically charged particles is neglected. Protons
and neutrons, in addition to the interaction terms (7), generate
p
id

(m
p

,⌫1
p

) and p
id

(m
n

,⌫1
n

+µ
e

), where m
p

, m
n

are the
proton and neutron masses and the shifted chemical potentials
defined as

⌫1
A

=µ
A

- pV - �S+U
⇣
nid(m

A

,⌫1
A

)
⌘

(8)

and

⌫2
A

=µ
A

- pV - ↵�S, (9)

where A 2 [p,n]. Here k1
p

=
q

⌫1
p

2 -m2
p

and k1
n

=
p

(⌫1
n

+ µ
e

)2 -m2
n

are the momentums of protons and neu-
trons, correspondingly. Indexes 1 and 2 denote parameters
from the Eq. (1) or (2). Thus, system of equations for simul-
taneous determination of pressure p and IST coefficient � in
the present model can be written as

p=p
id
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)-
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4

24⇡2
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-
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,µ
e

) (10)

�=
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id
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,⌫2
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) + p
id
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,⌫2
n

+ µ
e

)
�
R. (11)

Note, that electrons do not make any contribution to Eq. (11)
since they are treated in this work as point like particles with
R
e

=0 fm.
EoS given by Eqs. (11) and (12) enables us to find parti-

cle number densities n
i

of neutrons, protons and electrons as
total derivatives of the pressure p with respect to correspond-
ing chemical potentials, i.e. n

i

= @p

@µi
. Taking into account

condition of thermodynamic consistency given by Eq. (6) one
gets

n
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nid(m
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for A 2 [n,p] and
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Here notation
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A

nid(m
A

,⌫2
A

)V

1+ 3↵
P
A

nid(m
A

,⌫2
A

)V
. (14)

is introduced. Baryon density n
B

can be found as the sum of
neutron and proton particle densities, i.e.

n
B

= n
n

+ n
p

(15)

To model the interior of a NS it is necessary to provide
the electrical neutrality of the system, i.e. zero value of the
net density of the electric charge n

Q

. The latter condition
is equivalent to equality of particle densities of protons and
electrons, which leads to

n
Q

= n
p

- n
e

= 0 . (16)

This condition has to be accompanied by a balance of the
particle chemical potentials due to the chemical equilibrium
caused by equal rates of direct and inverse beta-decay pro-
cesses n $ p+e. Note that neutrino contribution is neglected
here. The neutron chemical potential is defined by the proton
and electron chemical potentials as

µ
n

= µ
p

+ µ
e

. (17)

The zero temperature energy density of electrically neutral
equilibrated mixture of neutrons, protons and electrons is de-
fined by the thermodynamic identity

✏ =
X

i=n,p,e

µ
i

n
i

- p = µ
n

n
B

- p , (18)

where Eqs. (16)-(18) are used on the second step. Expres-
sion (18) implicitly defines the dependence of the pressure on
energy density which is needed in order to solve the Tolman-
Oppenheimer-Volkoff (TOV) equation in the closed form to
model the internal structure of a compact star.

3. RESULTS AND DISCUSSION

After an EoS of NS matter is defined the structure and prop-
erties of compact stars are obtained by solving the TOV equa-
tion (Oppenheimer & Volkoff 1939; Tolman 1934, 1939) for
a spherically symmetric object of isotropic material which is
in static gravitational equilibrium. Inserting an EoS to TOV
equations we create a connection between internal properties

V. Sagun and I. Lopes,  Astrophys. J 2017, 850, 75 
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and, hence, at high temperatures the virial expansion of pid(T, ⌫) is defined by the first

(classical) term on the right hand side of (17), i.e. in this case one gets

pid(T, ⌫)

T n

' 1 + 4V0 n + (4V0 n)2 + (4V0 n)3 + ..., (18)

where after expanding the first term on the right hand side of (17) we used the relation

between b and V0. From this equation one sees that only the second virial coe�cient,

4V0, coincides with the one for the gas of hard spheres, while the third, 16V

2
0 , and the

fourth, 64V

3
0 virial coe�cients are essentially larger than their counterparts B3 = 10V

2
0

and B4 = 18.36V

3
0 of the gas of hard spheres. Also Eq. (17) can naturally explain why

in the work [13] the authors insisted on the interaction pressure Pint to be a linear

function of T (see a statement after Eq. (62) in [13]): if one chooses the interaction

pressure in the form

Pint(T, n(nid)) = Tn

h
(b2 � B3)n

2 + (b3 � B4)n
3 + (b4 � B5)n

4 + ...

i
,

then at high temperatures the quantum corrections are negligible and, hence, for such

a choice of Pint(T, n(nid)) with the corresponding value for the mean-field potential

U(T, n(nid)) obeying the self-consistency condition (4), one can improve the total

pressure of mean-field model by matching its repulsive part to the pressure of hard

spheres.

The problem, however, arises at low temperatures, while calculating the entropy

density for the model with Pint(T, n(nid)) (19). Indeed, for the choice U(T, n(nid)) =

g(T )f(n(nid)) from the thermodynamic identities s = @p(T,µ)
@T

and sid = @pid(T,⌫)
@T

one

finds [13]

s(T, µ) =
h
sid +

h
nid

@U
@T

� @Pint

@T

ii
[1 + b nid]

�1 = (19)

sid +

dg(T )

d T

Z nid

0
dñ f(n(ñ))

�
[1 + b nid]

�1
, (20)

where in deriving Eq. (21) we used an explicit form of Pint (19) and Eq. (5). As one

can see from (21) the mean-field model with linear T dependence of U or, equivalently,

of Pint, i.e. g(T ) = T ) dg(T)
d T

= 1, breaks down the Third Law of thermodynamics,

since at T = 0 one finds sid(T = 0, ⌫) = 0 by construction, whereas s(T = 0, µ) =

[1 + b nid]
�1 ·

nidR

0
dñ f(n(ñ)) 6= 0, unless f ⌘ 0. Hence, the mean-field model with the

D. Anchishkin and V. Vovchenko, arXiv:1411.1444 [nucl-th];	



V. Vovchenko, D. V. Anchishkin and M. I. Gorenstein,  Phys. Rev. C 91, (2015) 064314

In some papers it was suggested to improve QVdWaals by choosing  
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In this case one has to use the self-consistency condition:

10

tivistic mean-field models of Walecka type in which the mass shift of quasi-particles is

taken into account. Since such an e↵ect may be important for the modeling the chiral

symmetry restoration in hadronic matter the strongest arguments of whose existence

are recently given in [26], we leave it for a future exploration and concentrate here on

a simpler EoS defined by Eqs. (1)-(3).

The functions U(T, nid) and Pint(T, nid) are not independent, due to the thermody-

namic identity n(T, ⌫(µ, nid)) ⌘ @p(T,⌫(µ,nid))
@µ

. Therefore, the mean-field terms U and

Pint should obey the self-consistency condition

nid

@U(T, nid)

@nid

=
@Pint(T, nid)

@nid

) (4)

Pint(T, nid) = nid U(T, nid) �
Z nid

0
dn U(T, n) , (5)

After integrating by parts Eq. (4), we used in (5) an obvious condition U(T, 0) < 1.

If the condition (5) is obeyed, then the direct calculation of the µ-derivative of the

pressure (1) gives one the usual expression for particle number density in terms of the

density of point-like particles

n =
nid

1 + b nid

, (6)

nid(T, ⌫) = dp

Z
dk

(2⇡

3)

1

e

(E(k)�⌫
T ) + ⇣

. (7)

From these equations one finds that n ! b

�1 for nid ! 1. The limit nid ! 1 is

provided by the conditions ⌫ ! 1 or T ! 1 for ⇣ = {0; 1}, while for ⇣ = �1 it is

provided by the conditions ⌫ ! mp � 0 or T ! 1.

Note that in contrast to other works discussing Eqs. (4) and (5) through this paper

we will use the density of point-like particles nid as an argument of the functions

U(T, nid) and Pint(T, nid) instead of the physical density of particles n because for

more sophisticated EoS their relation will be more complicated than (6). Also such

a representation is convenient for a subsequent analysis because in terms of nid(T, ⌫)

the virial expansion of pid(T, ⌫) looks extremely simple [17]

pid(T, ⌫) = T

1X

l=1

a

(0)
l [nid(T, ⌫)]l , where (8)

a

(0)
1 = 1 , (9)

a

(0)
2 = �b

(0)
2 , (10)

The problem appears, when one calculates the entropy density at T=0! 



Problem With Generalized Quantum 
VdWaals EoS II

12

and, hence, at high temperatures the virial expansion of pid(T, ⌫) is defined by the first

(classical) term on the right hand side of (17), i.e. in this case one gets
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T n

' 1 + 4V0 n + (4V0 n)2 + (4V0 n)3 + ..., (18)

where after expanding the first term on the right hand side of (17) we used the relation

between b and V0. From this equation one sees that only the second virial coe�cient,

4V0, coincides with the one for the gas of hard spheres, while the third, 16V

2
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fourth, 64V

3
0 virial coe�cients are essentially larger than their counterparts B3 = 10V

2
0

and B4 = 18.36V

3
0 of the gas of hard spheres. Also Eq. (17) can naturally explain why

in the work [13] the authors insisted on the interaction pressure Pint to be a linear

function of T (see a statement after Eq. (62) in [13]): if one chooses the interaction

pressure in the form

Pint(T, n(nid)) = Tn

h
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2 + (b3 � B4)n
3 + (b4 � B5)n

4 + ...
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,

then at high temperatures the quantum corrections are negligible and, hence, for such

a choice of Pint(T, n(nid)) with the corresponding value for the mean-field potential

U(T, n(nid)) obeying the self-consistency condition (4), one can improve the total

pressure of mean-field model by matching its repulsive part to the pressure of hard

spheres.

The problem, however, arises at low temperatures, while calculating the entropy

density for the model with Pint(T, n(nid)) (19). Indeed, for the choice

U(T, n(nid)) = g(T )f(n(nid))
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where in deriving Eq. (20) we used an explicit form of Pint (19) and Eq. (5). As one

can see from (20) the mean-field model with linear T dependence of U or, equivalently,

of Pint, i.e. g(T ) = T ) dg(T)
d T

= 1, breaks down the Third Law of thermodynamics,

since at T = 0 one finds sid(T = 0, ⌫) = 0 by construction, whereas s(T = 0, µ) =

Assume
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then at high temperatures the quantum corrections are negligible and, hence, for such

a choice of Pint(T, n(nid)) with the corresponding value for the mean-field potential

U(T, n(nid)) obeying the self-consistency condition (4), one can improve the total

pressure of mean-field model by matching its repulsive part to the pressure of hard

spheres.

The problem, however, arises at low temperatures, while calculating the entropy

density for the model with Pint(T, n(nid)) (19). Indeed, for the choice
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where in deriving Eq. (20) we used an explicit form of Pint (19) and Eq. (5). As one

can see from (20) the mean-field model with linear T dependence of U or, equivalently,
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then at high temperatures the quantum corrections are negligible and, hence, for such

a choice of Pint(T, n(nid)) with the corresponding value for the mean-field potential

U(T, n(nid)) obeying the self-consistency condition (4), one can improve the total

pressure of mean-field model by matching its repulsive part to the pressure of hard

spheres.

The problem, however, arises at low temperatures, while calculating the entropy

density for the model with Pint(T, n(nid)) (19). Indeed, for the choice

U(T, n(nid)) = g(T )f(n(nid))

s = @p(T,µ)
@T

and sid = @pid(T,⌫)
@T

s(T, µ) =
h
sid +

h
nid

@U
@T

� @Pint

@T

ii
[1 + b nid]

�1 (19)

=

sid +

dg(T )

d T

Z nid

0
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where in deriving Eq. (19) we used an explicit form of Pint (19) and Eq. (5). As one

can see from (19) the mean-field model with linear T dependence of U or, equivalently,

of Pint, i.e. g(T ) = T ) dg(T)
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= 1, breaks down the Third Law of thermodynamics,

since at T = 0 one finds sid(T = 0, ⌫) = 0 by construction, whereas s(T = 0, µ) =
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then at high temperatures the quantum corrections are negligible and, hence, for such

a choice of Pint(T, n(nid)) with the corresponding value for the mean-field potential

U(T, n(nid)) obeying the self-consistency condition (4), one can improve the total

pressure of mean-field model by matching its repulsive part to the pressure of hard

spheres.

The problem, however, arises at low temperatures, while calculating the entropy

density for the model with Pint(T, n(nid)) (19). Indeed, for the choice
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where in deriving Eq. (20) we used an explicit form of Pint (19) and Eq. (5). As one

can see from (20) the mean-field model with linear T dependence of U or, equivalently,

of Pint, i.e.

For g(T ) = T )
dg(T )

d T

= 1 and Pint(T, n(nid)) ⇠ T

one finds
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For T ! 0 ) sid ! 0

breaks down the Third Law of thermodynamics, since at T = 0 one finds sid(T =

0, ⌫) = 0 by construction, whereas s(T = 0, µ) = [1 + b nid]
�1 ·

nidR

0
dñ f(n(ñ)) 6= 0,

unless f ⌘ 0. Hence, the mean-field model with the linear T dependence of Pint may

be very good at high temperatures, for which the Boltzmann statistics is valid, but it is

unphysical at T = 0. Of course, one can repair this defect by choosing more complicated

function g(T ), which g(T ) ⇠ T at high T , but its derivative g

0(T ) vanishes at T = 0

providing the fulfillment of the Third Law of thermodynamics. However, in this case

the whole idea to compensate the defects of the VdW EoS by tuning the interacting

part of pressure does not work at low T , since in this case Pint = g(T )F (nid) would

vanish faster than the term Tnid on the right hand side of Eq. (17). Thus, we explicitly

showed here that at low T the mean-field models defined by Eqs. (1)-(5) either are unphysical, if

Pint = TF (nid), or they cannot go beyond the VdW approximation by adjusting their interaction

pressure Pint.

Such a conclusion can be also applied to the one of two ways to introduce the

excluded volume correction into the quantum second virial coe�cients discussed in

Ref. [33]. Although the model of Ref. [33] contains the scalar mean-fields which

modify the masses of particles, the e↵ective potential approach to treat the excluded

volume correction of Ref. [33] with the linear T dependence of the repulsive e↵ective

potential Wi (equivalent to the mean-field potential �U in our notations) of the i-th

particle sort (see Eqs. (20) and (46) and (47) in [33]) should unavoidably lead to a

break down of the Third Law of thermodynamics. Therefore, we conclude that such

a way to introduce the excluded volume correction into the quantum second virial

coe�cients discussed in [33] is unphysical. Thus, despite the claims of author of Ref.

[33] such a generalization of the approach [7] to include the hard-core repulsion in

quantum systems leads to a problem with the Third Law of thermodynamics.

To end this section we express the traditional virial coe�cients a

Q
k of the quantum

VdW gas of Eq. (17) in terms of the classical excluded volume b and the quantum

virial coe�cients of point-like particles a

(0)
k . Expanding each denominator in Eq. (17)
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I.e. for U~T this EoS breaks down the Third Law of Thermodynamics! 



Problem With Generalized Quantum 
VdWaals EoS III

Thus, if  U~T then  QVdWaals breaks down the Third Law of Thermodynamics, 
if U~T^2 then then this EoS cannot go beyond the usual 

 VdWaals approximation at low T! 
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point-like particles and its partial derivatives are monotonic functions of the parame-

ters T and ⌫1 (or ⌫2) and that a non-monotonic behavior of the entropy per particle

can be caused by the phase transition, which does not exists for an ideal gas. Note

that here we do not consider a possible e↵ect of the Bose-Einstein condensation. Using

the above inequality between the entropies per particle and requiring that U1 � 0 and

the inequalities
dg�

A(T)

d T
> 0 for T > 0 and

dg�
A(T=0)

d T
= 0 one can show that s1

n1
� s̃id 2

nid 2
� 0

using an identity (5).

Another important case corresponds to the choice U1 > 0 and U2 < 0, i.e. the

mean-field U1 describes an attraction, while U2 represents a repulsion. Clearly, the

condition (34) in this case is also fulfilled for any choice of parameters. Using the self-

consistency relations (31), or its more convenient form (5), one can find that the term

describing the entropy of mean-field in s̃id2 can be negative, i.e. nid2
@U2

@ T
� @Pint 2

@ T
=

P
�

dg�
2 (T)

d T

nid 2R

0
dn f

�
2 (n) < 0, if g

�
2 (T ) > 0, dg�

2 (T)

d T
> 0 and U2 < 0 for T � 0. Such a

choice of interaction allows one to decrease the e↵ective entropy density s̃id2 or even

to make it negative by tuning the mean-field U2 related to the IST coe�cient. As a

result this would increase the physical entropy density s1. Note that for the VdW EoS

this is impossible.

V. APPLICATION TO NUCLEAR AND HADRONIC MATTER

As a pedagogical example to our discussion we consider the IST EoS for the nuclear

matter and compare it with the VdW EoS (1) having the following interaction

p

QV dW(T, nid) = Tnid � P

V dW
int (T, nid) with g(T ) ⌘

T

2

T + TSW

P

V dW
int (T, nid) = a

"
nid

1 + b nid

#2

+ Tnid �
g(T ) nid

1 + b nid

�
g(T )b n

2
id

[1 + b nid]
2 �

g(T ) B3 n

3
id

[1 + b nid]
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g(T ) B4 n

4
id

[1 + b nid]
4 )

p

QV dW(T, nid) = g(T )

"
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+
b n
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�
B4 n

4
id

[1 + b nid]
4

#
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"
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Example: QVdWaals and QIST far same parameters a and b

T_sw = 1 MeV

This QVdWaals the Third Law of 	


Thermodynamics and coincides with	


QIST at T > 120 MeV



Summary

1. We discussed the basic properties of VdWaals EoS 

3. The Quantum IST EoS of normal nuclear matter is 
developed. It obeys 11 conditions using 4 parameters!

4. We discussed the quantum virial coefficients of VdWaals 
and IST EoS and the problems of generalized QVdWaals

2. A heuristic derivation of the IST EoS is presented


