Space-time picture of ultrarelativistic nuclear collisions

Yuri Sinyukov

BITP, Kiev

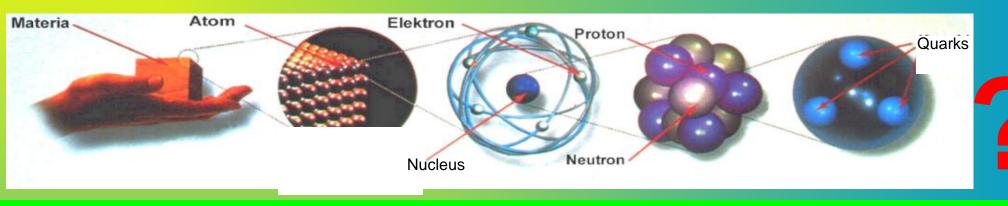
I. Elementary Introduction to relativistic nuclear physics

School "The basic ideas and concepts behind the modern High-Energy Physics and Cosmology« 5 - 16 October 2018, Truskavetz, Ukraine

Part 1

Elementary Introduction

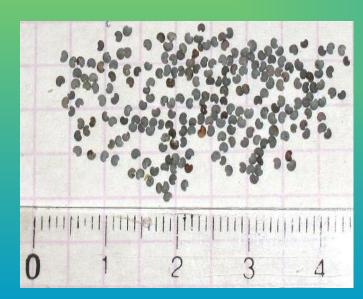
The structure of the matter and spatial scales



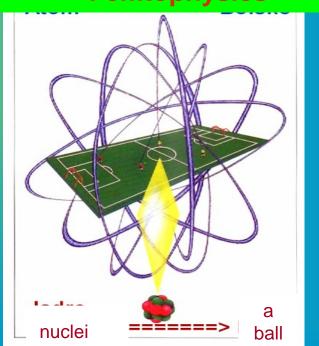
~10⁻¹ m
Seed ====> the Earth

~10⁻⁹ m (Nanophysics)

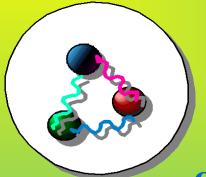
Atom ===> the seed



 $\sim 10^{-15} \,\mathrm{m} = 1 \,\mathrm{fm} = 1 \,\mathrm{Fm}$ Femtophysics



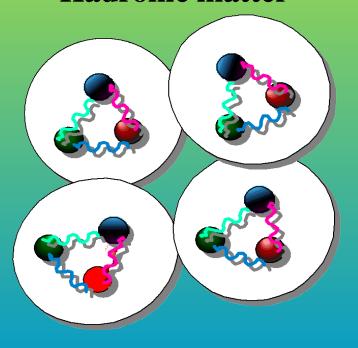
Nucleon (baryon)



«Confinement» of quarks in hadrons

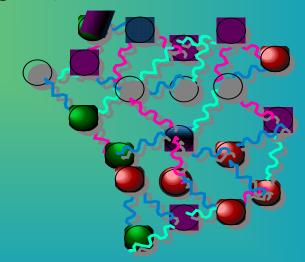
confinement

Hadronic matter



deconfinement

Quark-gluon matter (QGP)

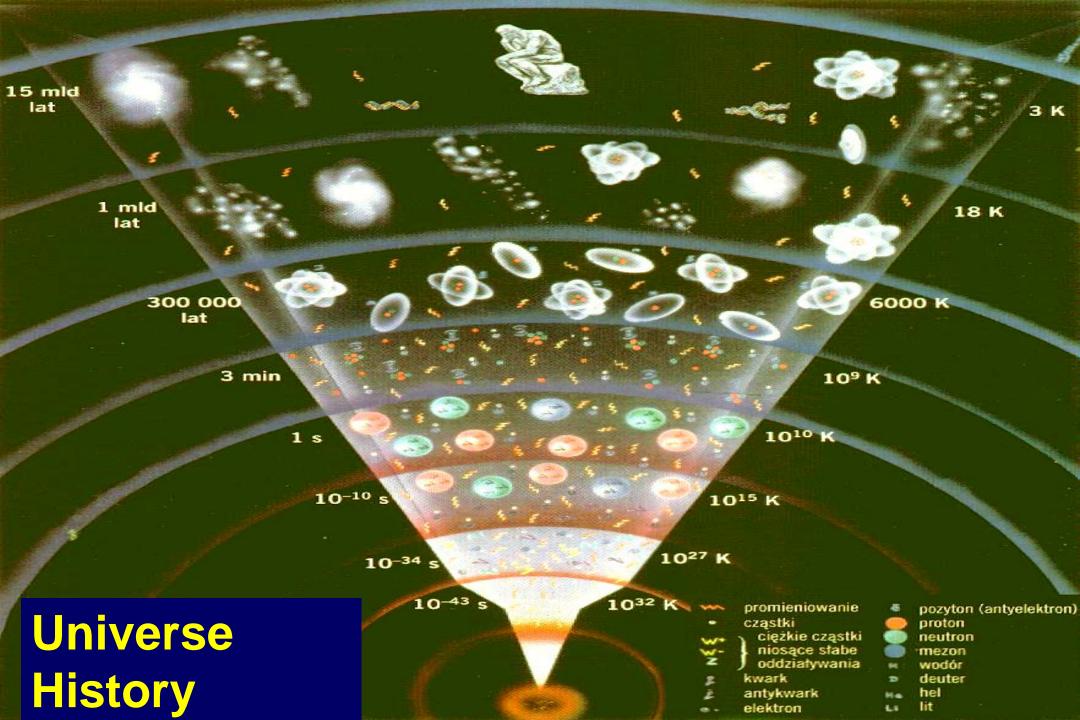


Why does the confinement happen?...
What is the difference between QCD and QED?

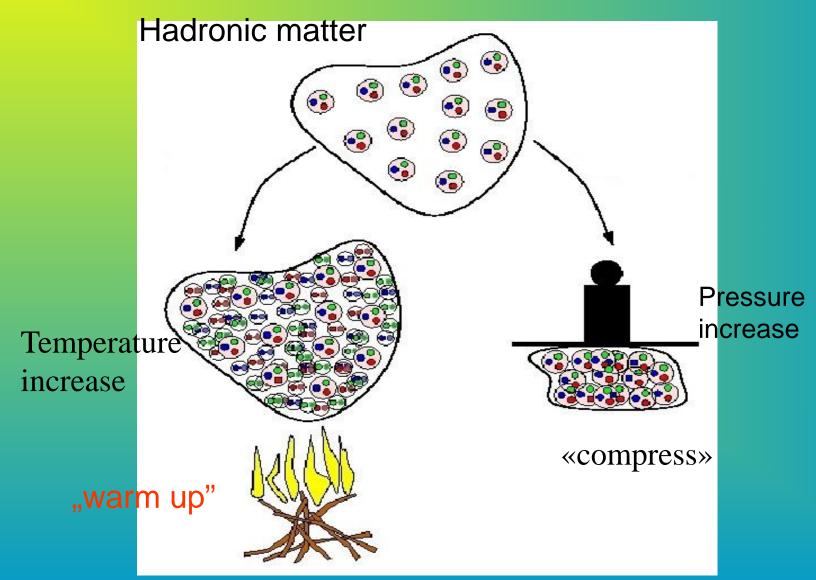
Electrons -> quarks,
Photons -> gluons.
But gluons carries
color charge.
This is the essence!

Is it possible to observe free quarks?

Such happened in the Early Universe!

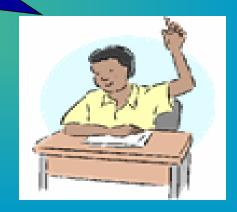


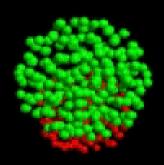
Is it possible to get Quark-Gluon Plasma in experiment?



How does it possible to "compress" and "warm up" hadrons: protons and neutrons"?

Really, how do create the pressure higher than in the neutron stars, and temperature in billion times higher than inside the Sun?



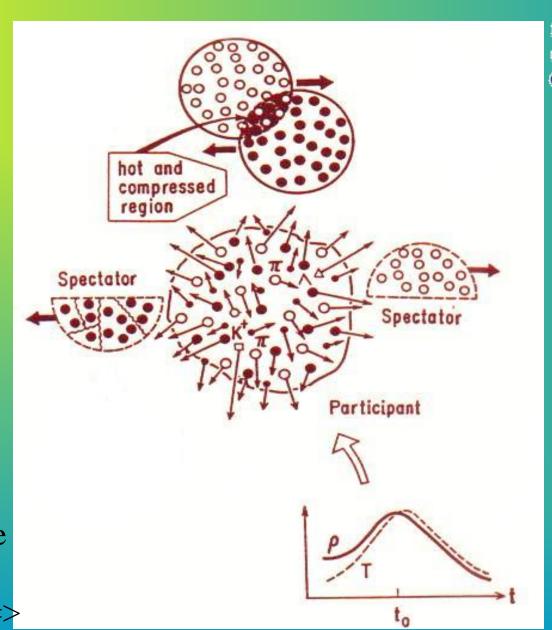


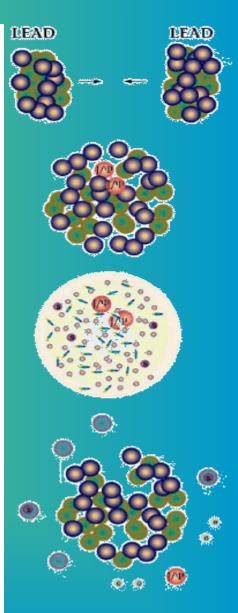
Relativistic heavy ion collisions

At the start ====>

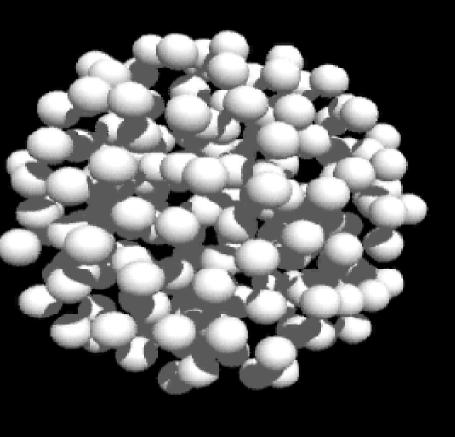
At the end===>

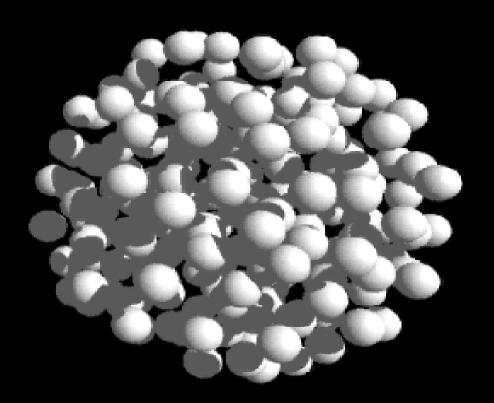
Temporal dependence of the pressure and temperature ======>





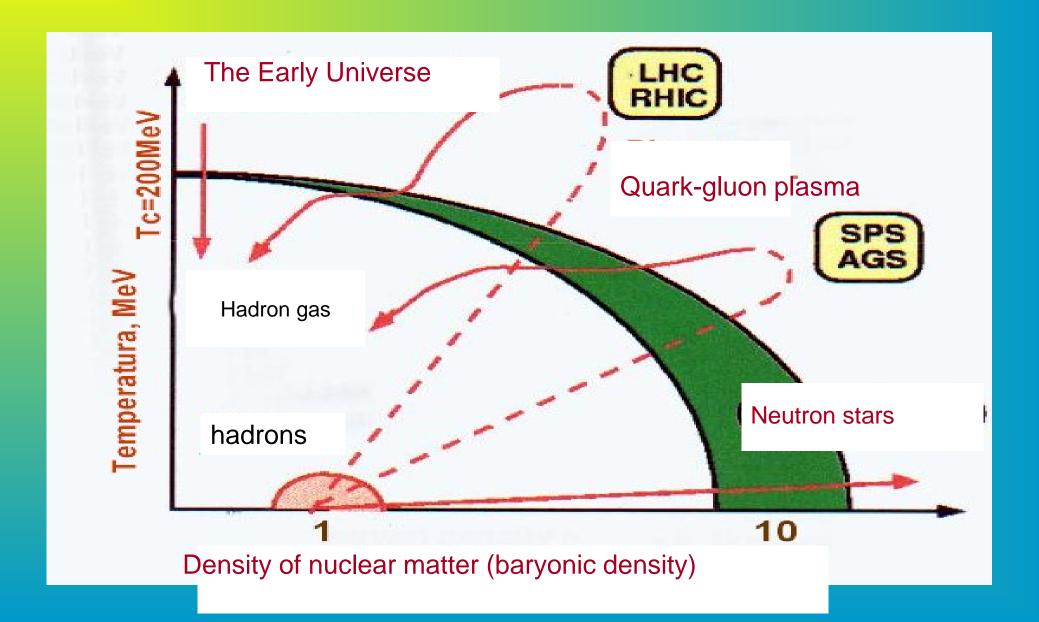
60 GeV/A t=-00.22 fm/c





Computer simulation of A+A collisions

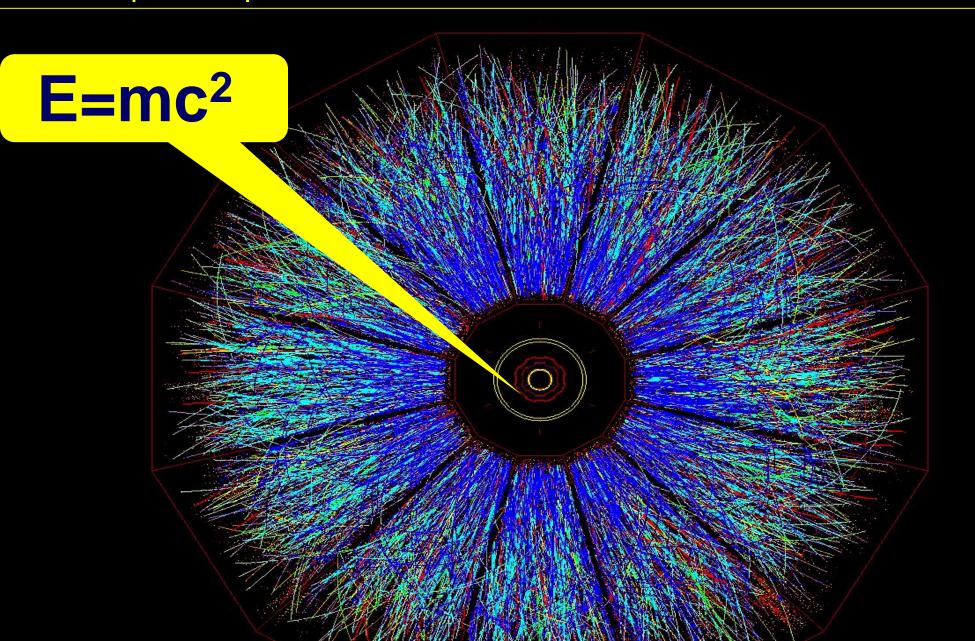
How to study QGP?



How does it become possible to create the Universe using a few hundreds colliding protons?

E=mc²!

The result of collision (197Au+ 197Au) at the CMS energy : 200 GeV per nucleon pair , experiment BNL STAR 400 \rightarrow 4000

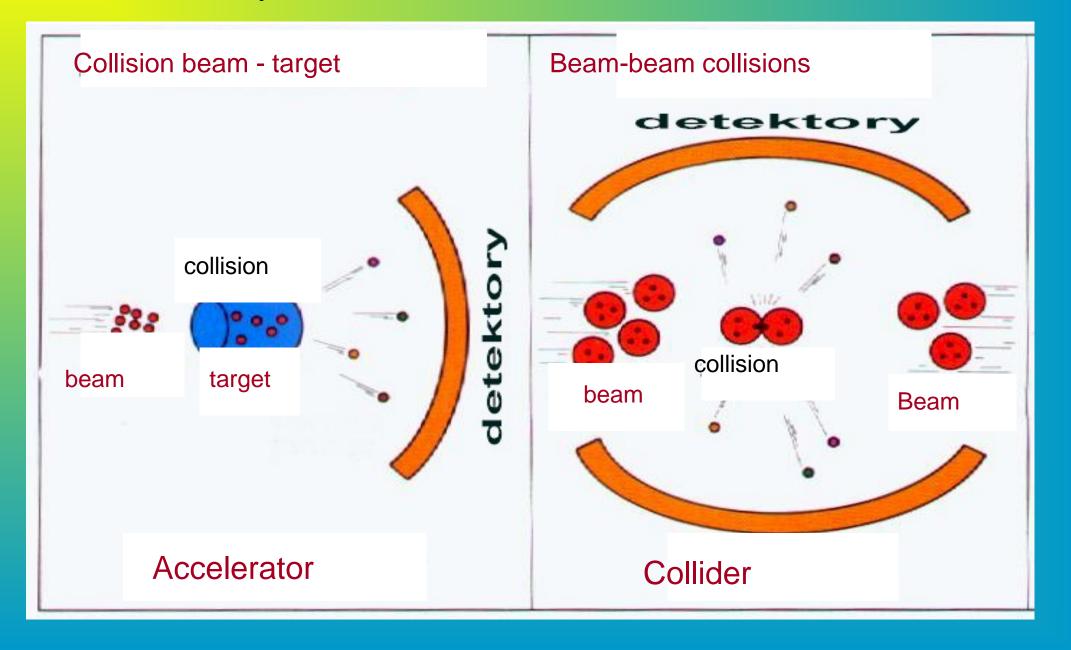


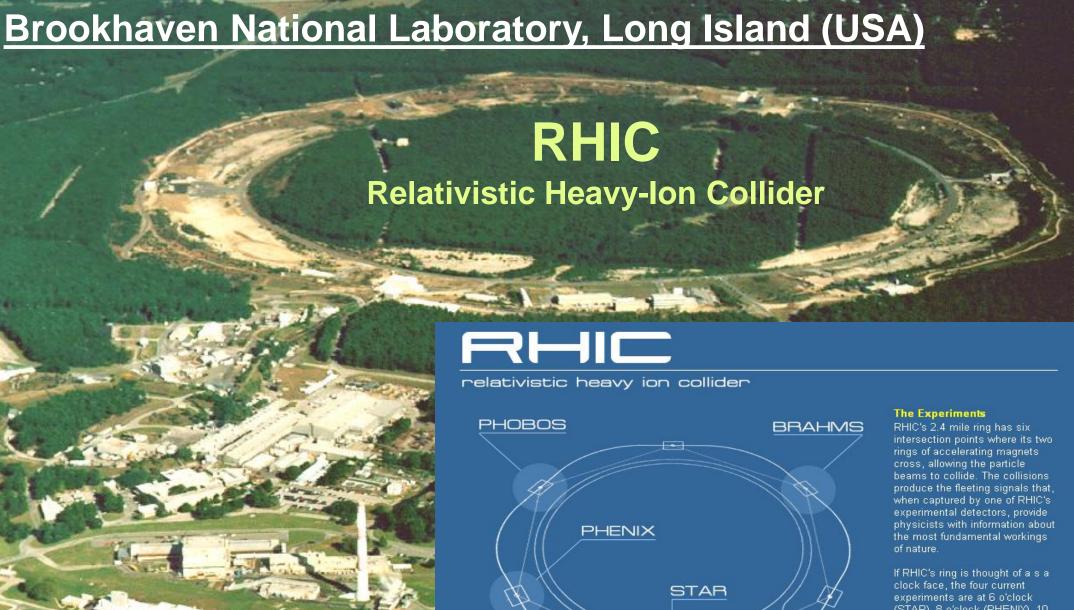
How does it work in practice?

The two things are necessary:

- 1. Accelarator (Collider)
- 2. Detector.

The two ways to realize A+A collisions

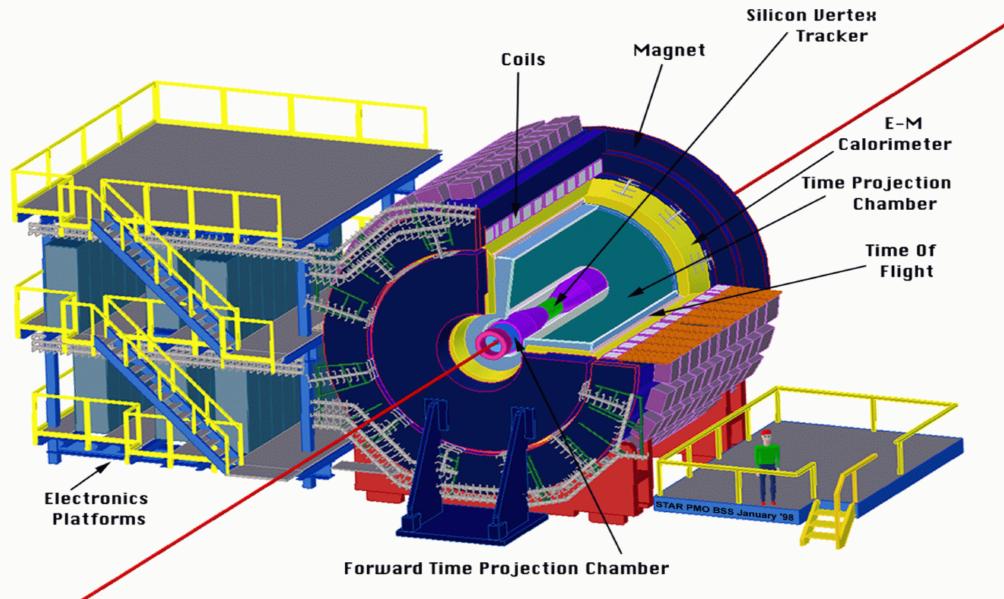




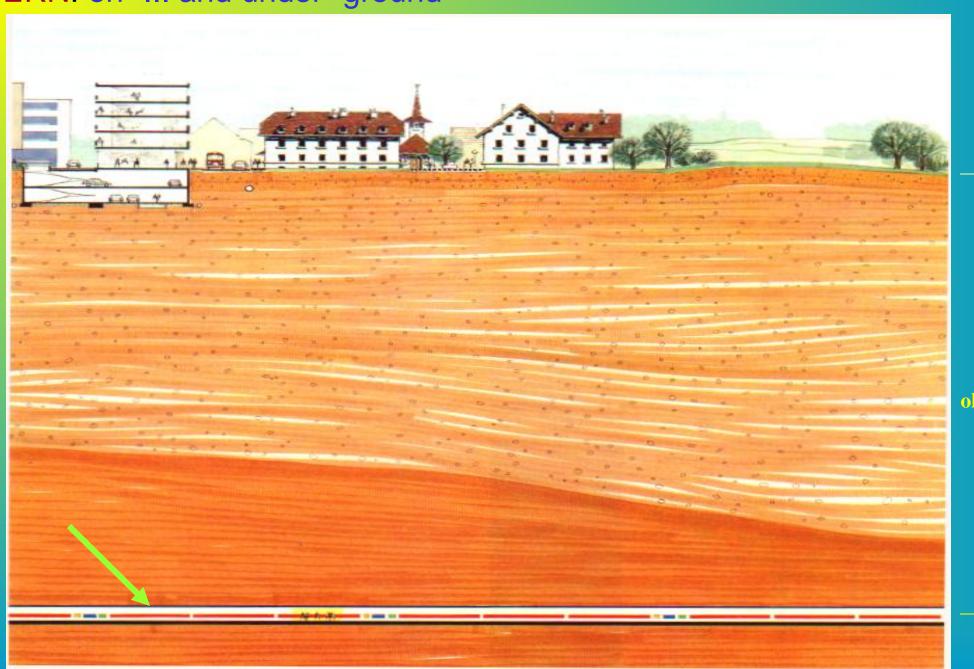
(STAR), 8 o'clock (PHENIX), 10 o'clock (PHOBOS) and 2 o'clock (BRAHMS). There are two

additional intersection points at 12 and 4 o'clock where future experiments may be placed. Visit any experiment by clicking on it.

STAR Detector

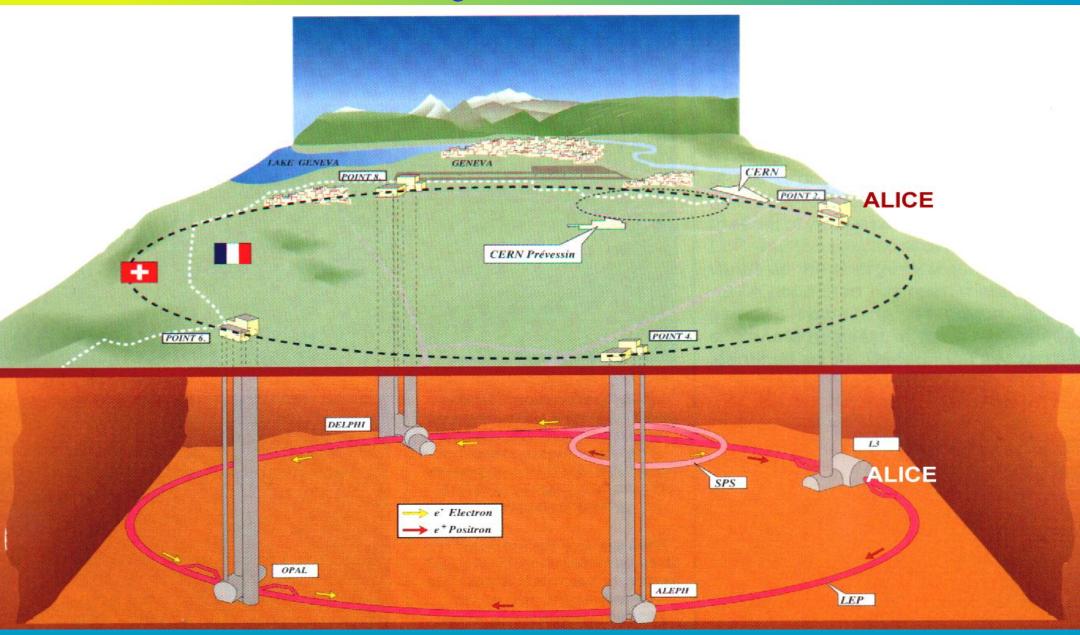


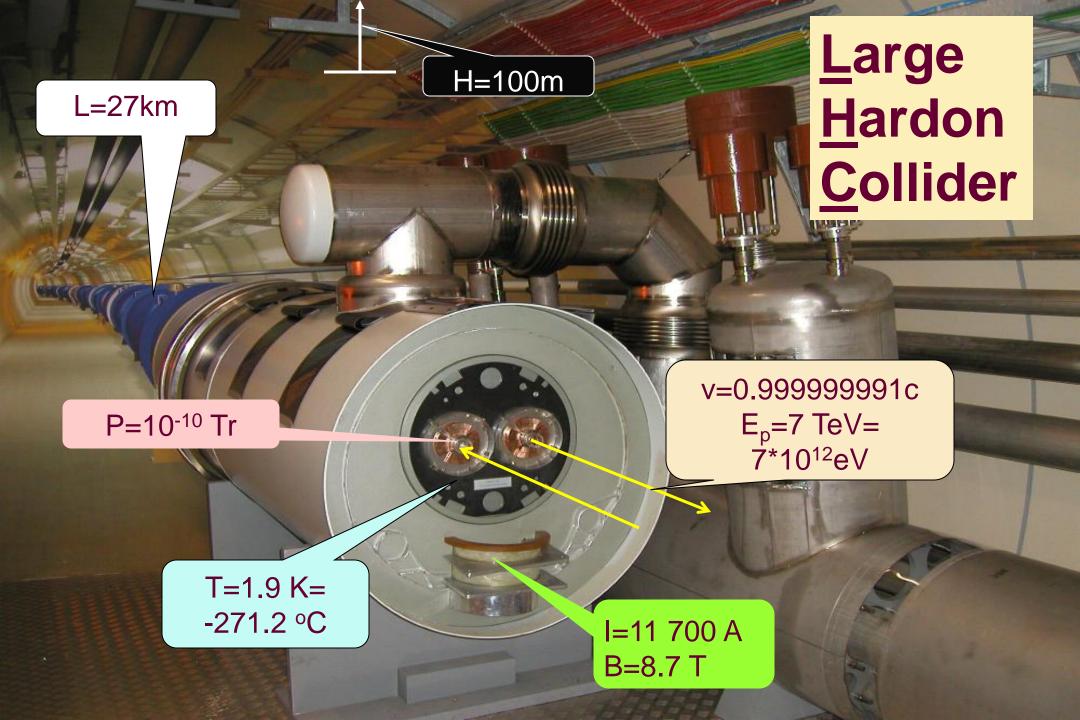
CERN: on- ... and under- ground

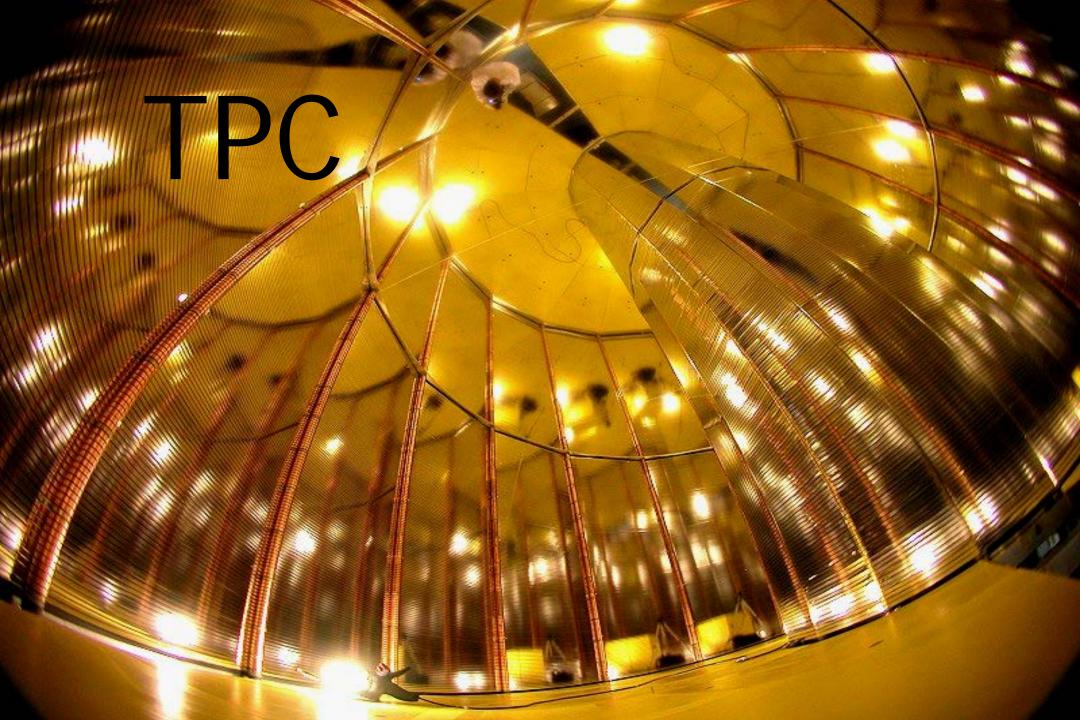


ok. 100m

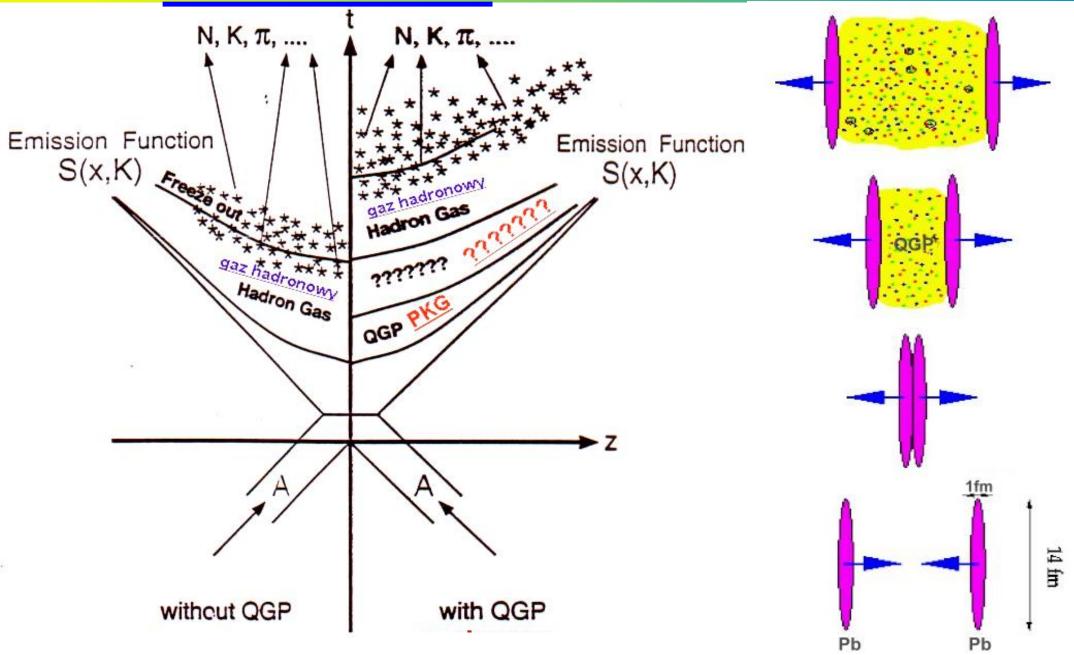
CERN – underground tunnel LEP/LHC



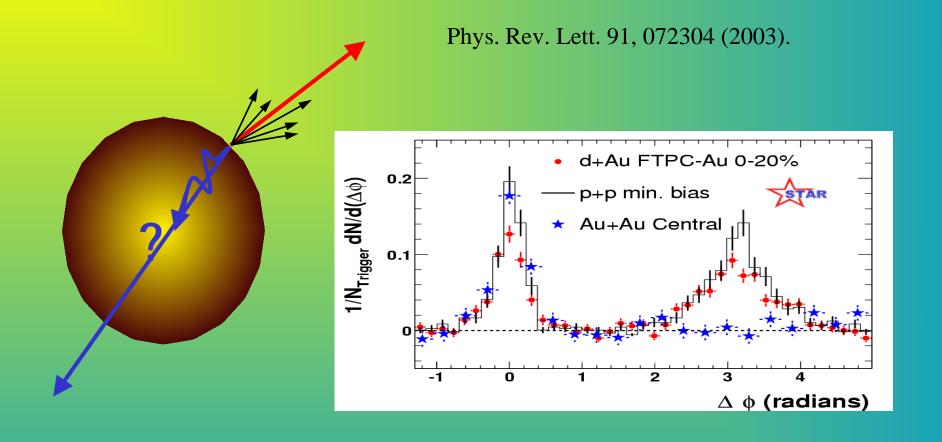




Two scenarios



Jet quenching as a signature of very dense matter

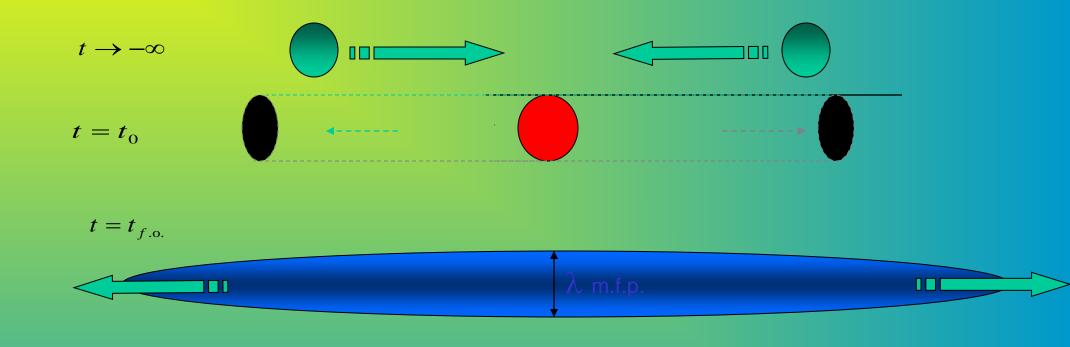


"... was observed *jet quenching* predicted to occur in a hot deconfined environment 100 times dense than ordinary nuclear matter" (BNL RHIC, June 2003).

Part 2

Matter evolution in ultrarelativistic A+A collisions

Hydrodynamic approach to multiparticle production [Landau, 1953]



Studying of (one- and multi- particle) **spectra** versus **IC** and **EoS** one can get, in principle information about earlier partonic stage of evolution: possible formation of QGP or even type of the phase transition.

Quasi-inertial hydrodynamics

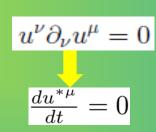
Hydrodynamic equation

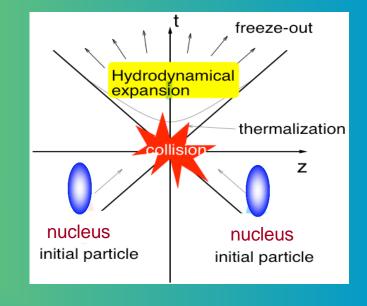
$$\partial_{\mu}T^{\mu\nu}=0$$

$$T^{\mu\nu} = (\epsilon + p) u^{\mu}u^{\nu} - pg^{\mu\nu}$$
 energy momentum tensor of perfect fluid $p = c_0^2 \epsilon$, $(0 < c_0^2 = \text{const} < 1)$

- (t,x,y,z)Coordinates
- Quasi-inertial flows Projection of equation on the $u^{
 u}\partial_{\mu}T^{\mu
 u}$ direction of 4-velocity

$$(\varepsilon + p)\partial_{\nu}u^{\nu} + u^{\nu}\partial_{\nu}\varepsilon = 0$$



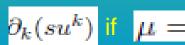


Thermodynamic identities:

$$\epsilon + p = Ts + \mu n$$

$$d\epsilon = Tds + \mu dn$$

$$T \partial_k(su^k) + \mu \partial_k(nu^k) = 0$$



(1+1)D boost-invariant hydrodynamic models

Quasi-inertial Hydrodynamic Equations

$$(\varepsilon + p)\partial_{\nu}u^{\nu} + u^{\nu}\partial_{\nu}\varepsilon = 0$$
$$u^{\mu}u^{\nu}\partial_{\nu}p - \partial^{\mu}p = 0$$

New variables

$$(\tau, x, y, \eta) : \tau = \sqrt{t^2 - z^2}, \eta = \tanh^{-1}\left(\frac{z}{t}\right)$$

$$t = \tau \cosh \eta, z = \tau \sinh \eta$$

One dimensional boost-invariant approximation:

$$u_x = u_y = 0; \epsilon = \epsilon(\tau)$$

Solution:

Hydro-velocity:

$$v_z = \frac{z}{t}; (u_0 = \frac{t}{\sqrt{t^2 - z^2}}, u_x = 0, u_y = 0, u_z = \frac{z}{\sqrt{t^2 - z^2}})$$

Quasi-inertiality

$$(\varepsilon + p)\partial_{\nu}u^{\nu} + u^{\nu}\partial_{\nu}\varepsilon = 0 \qquad \Longrightarrow \qquad \frac{d\epsilon}{d\tau} = (1 + c_0^2)\epsilon(\tau)$$

$$\epsilon(\tau) = \epsilon(\tau_0) \left(\frac{\tau_0}{\tau}\right)^{(1+c_0^2)} \qquad s(\tau) = s(\tau_0) \frac{\tau_0}{\tau}$$

It is so called "Bjorken solution", in fact, invented by R. Hwa and C. Chiu

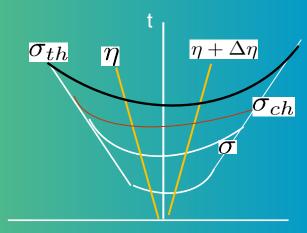
The basic properties of the boost-invariant solution

$$S(\Delta \eta) = \int_{\eta}^{\eta + \Delta \eta} s(\tau) u^{\mu} d\sigma_{\mu} = s(\tau_0) \tau_0 \Delta \eta \pi R^2$$

$$E(\Delta \eta) = \int_{\eta}^{\eta + \Delta \eta} T^{0\mu}(\tau, \eta) u^{\mu} d\sigma_{\mu} \stackrel{c_0^2 \to 0}{\to} \epsilon(\tau_0) \tau_0 2 \sinh(\Delta \eta / 2) \pi R^2$$

$$\varepsilon_0 = \frac{\langle m_t \rangle}{(R^2 \pi) \tau_0} \frac{dn}{dy}.$$

Conception of thermal freeze-out



Cooper-Frye formula for sudden thermal freeze-out $p^0 rac{d^3 N}{d^3 p} = \int_{\sigma_{th}} d\sigma_\mu p^\mu f(x,p)$

Conception of chemical freeze-out

$$N_i = p^0 \frac{d^3 N}{d^3 p} = \int_p \int_{\sigma_{ch}} \frac{d^3 p}{p^0} d\sigma_{\mu} p^{\mu} f(\frac{p^{\mu} u_{\mu}(x)}{T_{ch(x)}}, \frac{\mu_{i,ch}(x)}{T_{ch}(x)})$$

Generalization of sudden freeze-out to continuous one: Hydro + Cascade models

$$p^0 \frac{d^3 N}{d^3 p} \approx \int_{\sigma(p)} d\sigma_{\mu} p^{\mu} f(x, p)$$

Where $\sigma(p)$ is peace of hypersurface where the particles with momentum near p has a maximal emission rate

7

Useful formulas 1

At relativistic energies, due to dominant longitudinal motion, it is convenient to substitute the Cartesian coordinates t, z by the Bjorken ones

$$\tau = (t^2 - z^2)^{1/2}, \quad \eta = \frac{1}{2} \ln \frac{t+z}{t-z}$$

and introduce the the radial vector $\vec{r} \equiv \{x, y\} = \{r \cos \phi, r \sin \phi\}$, i.e.:

 $x^{\mu} = \{ \tau \cosh \eta, \vec{r}, \tau \sinh \eta \} = \{ \tau \cosh \eta, r \cos \phi, r \sin \phi, \tau \sinh \eta \}.$

Representing the freeze-out hypersurface by the equation $\tau = \tau(\eta, r, \phi)$, the

hypersurface element in terms of the coordinates η , r, ϕ becomes

$$d^{3}\sigma_{\mu} = \epsilon_{\mu\alpha\beta\gamma} \frac{dx^{\alpha}dx^{\beta}dx^{\gamma}}{d\eta dr d\phi} d\eta dr d\phi, \tag{32}$$

where $\epsilon_{\mu\alpha\beta\gamma}$ is the completely antisymmetric Levy-Civita tensor in four dimensions with $\epsilon^{0123} = -\epsilon_{0123} = 1$. Particularly, for azimuthaly symmetric hypersurface $\tau = \tau(\eta, r)$, Eq. (32) yields [12]:

Useful formulas 2

$$u^{\mu}(r,\eta) = \gamma(\cosh\eta, v\cos\phi, v\sin\phi, \sinh\eta),\tag{7}$$

where $\gamma = (1 - v^2)^{-1/2}$. The element of the hypersurface $\sigma(x)$ takes the form

$$d\sigma_{\mu} = \tau(r, \eta) \, d\eta \, dr_{x} \, dr_{y}$$

$$\times \left(\frac{1}{\tau} \frac{d\tau}{dn} \sinh \eta + \cosh \eta, -\frac{d\tau}{dr_{x}}, -\frac{d\tau}{dr_{y}}, -\frac{1}{\tau} \frac{d\tau}{dn} \cosh \eta - \sinh \eta \right). \tag{8}$$

 $p^{\mu} = (m_T \cosh y, p_T \cos \psi, p_T \cos \psi, m_T \sinh y)$

$$m_T = \sqrt{m^2 + p_T^2}$$

In Bjorken 1+1 D model:

$$d\sigma_{\mu}p^{\mu} = \pi R_T^2 \tau dy \cosh(y - \eta)$$

$$u_{\mu}p^{\mu} = m_T \cosh(y - \eta)$$