> Johannes Nadenau

BPMs

Motivation Measuring metho Types

Cavity Theor Eigenmodes Characteristics Beam positioning

BPMs at CLEAR CLEAR CBPMs

Frontend Characteriza tion

Beam Measurements

Summary

21.09.18 1 / 43

Examination of RF Processing for Cavity BPMs

Johannes Nadenau

JEDI-Collaboration Institut für Kernphysik, Forschungszentrum Jülich III. Physikalisches Institut B, RWTH Aachen University

21.09.18

> Johannes Nadenau

BPMs

Motivation Measuring method Types

Cavity Theory Eigenmodes Characteristics Beam positioning

BPMs at CLEAR CLEAR CBPMs

Frontend Characterization

Beam Measurements

Summary

21.09.18 2 / 43

Motivation of BPMs

- \bullet Lost energy: 400 ${\rm GeV}$ in $5\,{\rm ms}$
- Beam size: $\approx 2 \times 1.6 \,\mathrm{mm}$
- Beam Power: 2 MW
- Cause: Wrong setting in vertical tune

BBM 33130

> Johannes Nadenau

BPMs

Motivation Measuring metho Types

Cavity Theory Eigenmodes Characteristics Beam positioning

BPMs at CLEAR CLEAR CBPMs

Frontend Characterization

Beam Measurements

Summary

21.09.18 3 / 43

Motivation of BPMs

Additonal parameters

- Beam optics
- Beam tune

Feedback to align and stabilize the beam orbit

BBM 33130

Johannes Nadenau

BPMs

Motivation Measuring methods Types

Cavity Theor Eigenmodes Characteristics Beam positioning

BPMs a CLEAR CLEAR CBPMs

Frontend Characterization

Beam Measurements

Summary

21.09.18 4 / 43

Image Current

> Johannes Nadenau

BPMs

Motivation Measuring method Types

Cavity Theory Eigenmodes Characteristics Beam positioning

BPMs a CLEAR CLEAR CBPMs

Frontend Characterization

Beam Measurements

Summary

21.09.18 5 / 43

Three BPMs for CLIC

Button BPM

- $\sim 10 \, \mu \mathrm{m}$
- Measuring method: image current
- Simple and robust

Stripline BPM

- $\sim 2\,\mu\mathrm{m}$
- Measuring method:
 - image current
- Integrable into other structures

> Johannes Nadenau

BPMs

Motivation Measuring method: Types

Cavity Theory Eigenmodes Characteristics Beam positioning

BPMs a CLEAR CLEAR CBPMs

Frontend Characterization

Beam Measurements

Summary

21.09.18 5 / 43

Three BPMs for CLIC

Button BPM

- $\sim 10 \, \mu \mathrm{m}$
- Measuring method: image current
- Simple and robust

Stripline BPM

- $\sim 2\,\mu\mathrm{m}$
- Measuring method: image current
- Integrable into other structures

Cavity BPM

- $\sim 50\,\mathrm{nm}$
- Measuring method: eigenmodes
- Sophisticate adjustment

> Johannes Nadenau

BPMs

Motivation Measuring method Types

Cavity Theory Eigenmodes Characteristics Beam positioning

BPMs a CLEAR CLEAR CBPMs

Frontend Characteriza tion

Beam Measurements

Summary

21.09.18 6 / 43

What is a cavity?

Johannes Nadenau

BPMs

Motivation Measuring method Types

Cavity Theory Eigenmodes Characteristics Beam positioning

BPMs a CLEAR CLEAR CBPMs

Frontend Characterization

Beam Measurements

Summary

21.09.18 7 / 43

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{B} = \mu \mathbf{j} - \epsilon \mu \frac{\partial \mathbf{E}}{\partial t}$$

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon}$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\mathbf{E}(\mathbf{r}, t) = \mathbf{E}(\mathbf{r})e^{i\omega t}$$

$$\mathbf{H}(\mathbf{r}, t) = \mathbf{H}(\mathbf{r})e^{i\omega t}$$

$$\mathbf{I}(\mathbf{r}, t) = \mathbf{H}(\mathbf{r})e^{i\omega t}$$

$$\mathbf{I}(\mathbf{r}, t) = \mathbf{H}(\mathbf{r})e^{i\omega t}$$

Johannes Nadenau

BPMs

Motivation Measuring metho Types

Cavity Theory Eigenmodes Characteristics Beam positioning

CLEAR CLEAR CBPMs

Frontend Characterization

Beam Measurements

Summary

21.09.18 8 / 43

Waveguide

> Johannes Nadenau

BPMs

Motivation Measuring method Types

Cavity Theory Eigenmodes

Characteristics Beam positionin

BPMs at CLEAR CLEAR CBPMs

Frontend Characterization

Beam Measurements

Summary

21.09.18 9 / 43

Boundary Conditions

Singularity
$$D = 0$$
 N_m is singular at $r = 0$

21.09.18 9 / 43

Summary

21.09.18 9 / 43

> Johannes Nadenau

BPMs

Motivation Measuring method Types

Cavity Theory Eigenmodes Characteristics

Beam positioning

BPMs at CLEAR CLEAR

CBPMs

Frontend Characterization

Beam Measurements

Summary

21.09.18 10 / 43

Now we make it a cavity

- Include a wall perpendicular to z at $z = \pm I$
- Produces boundary conditions: $H_z = 0, E_r = 0, E_{\varphi} = 0$ at $z = \pm I$

•
$$ae^{ik_3z}
ightarrow A\cos(k_zz)$$

•
$$k_z = \frac{p\pi}{l}$$

> Johannes Nadenau

BPMs

Motivation Measuring method Types

Cavity Theory Eigenmodes Characteristics

Beam positioning

BPMs at CLEAR CLEAR

Frontend Characterization

Beam Measurements

Summary

21.09.18 10 / 43

Now we make it a cavity

- Include a wall perpendicular to z at $z = \pm I$
- Produces boundary conditions: $H_z = 0, E_r = 0, E_{\varphi} = 0$ at $z = \pm I$

•
$$ae^{ik_3z}
ightarrow A\cos(k_zz)$$

•
$$k_z = \frac{p\pi}{l}$$

Johannes Nadenau

BPMs

Motivation Measuring method Types

Cavity Theory Eigenmodes Characteristics

Beam positioning

BPMs a CLEAR CLEAR CBPMs

Frontend Characterization

Beam Measurements

Summary

21.09.18 11 / 43

We have our Eigenmodes!!!

 $TM_{mnl}: E_z = E_{mn} \cdot J_m(k_c r) \cdot e^{im\varphi} \cos(ik_z z)$ with $J_m(k_c a) = 0$

- $\bullet\,$ m: Number of wave nodes in φ direction
- n: Number of wave nodes in r direction
- I: Number of wave nodes in z direction

Johannes Nadenau

BPMs

Motivation Measuring method Types

Cavity Theory Eigenmodes

Characteristics Beam positioning

BPMs a CLEAR CLEAR CBPMs

Frontend Characterization

Beam Measurements

Summary

21.09.18 12 / 43

*TM*₀₁₀

 $E_z = E_{01} \cdot J_0(k_c r)$

Johannes Nadenau

BPMs

Motivation Measuring methods Types

Cavity Theory Eigenmodes

Characteristics Beam positionin

BPMs a CLEAR CLEAR CBPMs

Frontend Characterization

Beam Measurements

Summary

21.09.18 13 / 43

*TM*₁₁₀

 $E_z = E_{11} \cdot J_1(k_c r) e^{i\varphi}$

Two perpendicular polarisations

> Johannes Nadenau

BPMs

Motivation Measuring methoo Types

Cavity Theory Eigenmodes Characteristics Beam positioning

BPMs at CLEAR CLEAR CBPMs

Frontend Characterization

Beam Measurements

Summary

21.09.18 14 / 43

Equivalent circuit

•
$$U(t) = U_0 \cdot e^{-\frac{t}{2\tau} \cdot e^{i(\omega_0 t + \varphi_0)}}$$

- Decay time τ = R · C: Several measurements per Bunch vs. Interaction with next bunch
- Resonance frequency $\omega_0 = \frac{1}{\sqrt{L \cdot C}}$: Has to be adjusted to the beam
- Quality factor $Q_0 = \omega_0 \tau = \frac{R}{\omega_0 L}$, high quality factor \rightarrow High resolution but low resonance width.

21.09.18

- Resonance frequency $\omega_0 = \frac{1}{\sqrt{L \cdot C}}$: Has to be adjusted to the beam
 - Quality factor $Q_0 = \omega_0 \tau = \frac{R}{\omega_0 L}$, high quality factor \rightarrow High resolution but low resonance width.

Johannes Nadenau

BPMs

Motivation Measuring method Types

Cavity Theory Eigenmodes Characteristics Beam positioning

BPMs at CLEAR CLEAR CBPMs

Frontend Characterization

Beam Measurements

Summary

21.09.18 15 / 43

Excitation

• Shunt impedance: $U_0 \propto Z_{shunt} \cdot I_{Beam}$

 $\bullet\,$ High Shuntimpedance $\to\,$ large Signal but also large interaction with Beam

> Johannes Nadenau

BPMs

Motivation Measuring methods Types

Cavity Theory Eigenmodes Characteristics Beam positioning

BPMs at CLEAR CLEAR CBPMs

Frontend Characterization

Beam Measurements

Summary

21.09.18 16 / 43

Shunt impedance

Position Cavity	Re
• TM_{110} • $Z_{Shunt} \propto x$	
• $E_{11} \propto I_{beam} \cdot X$	

Reference Cavity		
• <i>TM</i> ₀₁₀		
• Z _{Shunt} = const		
• $E_{01} \propto I_{beam}$		

> Johannes Nadenau

BPMs

Motivation Measuring method Types

Cavity Theory Eigenmodes Characteristics Beam positioning

BPMs at CLEAR

CRPM

Frontend Characterization

Beam Measurements

Summary

21.09.18 17 / 43

<u>clear</u>

- CERN Linear Electron Accelerator for Research
- Goal: Providing a test facility at CERN with high availability, easy access and high quality bunched electron beams

https://clear.web.cern.ch/content/photo-gallery

> Johannes Nadenau

BPMs

Motivation Measuring method Types

Cavity Theory Eigenmodes Characteristics Beam positioning

BPMs at CLEAR

CREAK

Frontend Characterization

Beam Measurements

Summary

21.09.18 17 / 43

<u>clear</u>

- CERN Linear Electron Accelerator for Research
- Goal: Providing a test facility at CERN with high availability, easy access and high quality bunched electron beams

https://clear.web.cern.ch/content/photo-gallery

> Johannes Nadenau

BPMs

Motivation Measuring method Types

Cavity Theory Eigenmodes Characteristics Beam positioning

BPMs at CLEAR

CLEAR

CBPMs

Frontend Characterization

Beam Measurements

Summary

21.09.18 18 / 43

- Accelerating electrons to $130-220\,\mathrm{MeV}$
- Bunch charge $0.01 0.5 \,\mathrm{nC}$
- Repetition rate (trains) 1 Hz
- Number of bunches in train 1-100
- Bunch spacing 1.5 GHz

Johannes Nadenau

BPMs

Motivation Measuring method Types

Cavity Theory Eigenmodes Characteristics Beam positioning

Beam Pipe

BPMs at CLEAR

CLEAR

Frontend Characterization

Beam Measurements

Summary

21.09.18 19 / 43

The CLIC Cavity BPM

- Required for monitoring the beam trajectory in the CLIC main linac
- Resolution potential: 50 nm and 50 ns
- \bullet Adjusted to $15\,\rm{GHz}$

4

Johannes Nadenau

BPMs

Motivation Measuring methods Types

Cavity Theory Eigenmodes Characteristics Beam positioning

BPMs at CLEAR

CLEAR CBPMs

Frontend Characteriza tion

Beam Measurements

Summary

21.09.18 20 / 43

Setup At CLEAR

> Johannes Nadenau

BPMs

Motivation Measuring method Types

Cavity Theory Eigenmodes Characteristics Beam positioning

BPMs at CLEAR CLEAR CBPMs

Frontend Characterization

Beam Measurements

Summary

21.09.18 22 / 43

Frontend Characterization

- Characterization of tunable components
- Determine gain of all components
- Determine 1 dB compression point to prevent saturation issues

Johannes Nadenau

BPMs

- Motivation Measuring methoo Types
- Cavity Theory Eigenmodes Characteristics Beam positioning
- BPMs at CLEAR CLEAR CBPMs

Frontend Characterization

- Beam Measurements
- Summary

21.09.18 23 / 43

Modification Controlling

Raspbery as inexpensive alrounder

- Raspian: Preinstalled python environment for existing and planed software
- PyGPIO provides simple serial port control

Johannes Nadenau

BPMs

Motivation Measuring method Types

Cavity Theory Eigenmodes Characteristics Beam positioning

BPMs at CLEAR CLEAR CBPMs

Frontend Characterization

Beam Measurements

Summary

21.09.18 24 / 43

Setup RF Sector

> Johannes Nadenau

BPMs

Motivation Measuring method Types

Cavity Theory Eigenmodes Characteristics

BPMs at CLEAR CLEAR CBPMs

Frontend Characterization

Beam Measurements

Summary

21.09.18 25 / 43

Results RF Sector

Attenuator

- Slope follows the data sheet
- Offset due to other components

> Johannes Nadenau

BPMs

Motivation Measuring method Types

Cavity Theory Eigenmodes Characteristics Beam positioning

BPMs at CLEAR CLEAR CBPMs

Frontend Characterization

Beam Measurements

Summary

21.09.18 25 / 43

Results RF Sector

Attenuator

- Slope follows the data sheet
- Offset due to other components

RF amplifier

- Slope follows the data sheet
- "Prohibited" area in the beginning

BPMs

Motivation Measuring method Types

Eigenmodes Characteristics Beam positioning

BPMs at CLEAR CLEAR CBPMs

Frontend Characterization

Beam Measuremen

Summary

21.09.18 26 / 43

Saturation

Setup The signal generator and the signal analyzer are replaced by a VNA.

Johannes Nadenau

BPMs

Motivation Measuring method Types

Cavity Theory Eigenmodes Characteristics Beam positioning

BPMs a CLEAR CLEAR CBPMs

Frontend Characterization

Beam Measurements

Summary

21.09.18 27 / 43

Setup IF Amplifier

Johannes Nadenau

BPMs

Motivation Measuring metho Types

Cavity Theory Eigenmodes Characteristics Beam positioning

BPMs at CLEAR CLEAR CBPMs

Frontend Characterization

Beam Measurements

Summary

21.09.18 28 / 43

Results IF Amplifier

Johannes Nadenau

BPMs

Motivation Measuring metho Types

Cavity Theor Eigenmodes Characteristics Beam positioning

BPMs at CLEAR CLEAR CBPMs

Frontend Characterization

Beam Measurements

Summary

21.09.18 29 / 43

Results IF Amplifier

Johannes Nadenau

BPMs

- Motivation Measuring method Types
- Cavity Theory Eigenmodes Characteristics Beam positioning
- BPMs at CLEAR CLEAR CBPMs
- Frontend Characterization
- Beam Measurements
- Summary

21.09.18 30 / 43

Summary

- Results are fed into a Pyhton script
- Input power is determined
- Best settings are set

> Johannes Nadenau

BPMs

- Motivation Measuring methor Types
- Cavity Theory Eigenmodes Characteristics Beam positioning
- BPMs at CLEAR CLEAR
- CBPMs
- Frontend Characterization

Beam Measurements

Summary

21.09.18 31 / 43

Beam Measurments

- Goal: Get the resolution of the system
- Two sessions
 - November 2017
 - June 2018
 - September 2018

> Johannes Nadenau

BPMs

Motivation Measuring metho Types

Cavity Theor Eigenmodes Characteristics Beam positioning

BPMs at CLEAR CLEAR CBPMs

Frontend Characterization

Beam Measurements

Summary

21.09.18 32 / 43

Calibration

> Johannes Nadenau

BPMs

Motivation Measuring metho Types

Cavity Theory Eigenmodes Characteristics Beam positioning

BPMs at CLEAR CLEAR CBPMs

Frontend Characteriza tion

Beam Measurements

Summary

21.09.18 32 / 43

Calibration

Calibration

Johannes Nadenau

BPMs

Motivation Measuring metho Types

Cavity Theory Eigenmodes Characteristics Beam positioning

BPMs a CLEAR CLEAR CBPMs

Frontend Characterization

Beam Measurements

Summary

21.09.18 33 / 43

• Each measurement set consists of 6 calibration and one resolution measurement

Johannes Nadenau

BPMs

Motivation Measuring metho Types

Cavity Theory Eigenmodes Characteristics Beam positioning

BPMs a CLEAR CLEAR CBPMs

Frontend Characteriza tion

Beam Measurements

Summary

21.09.18 34 / 43

November 2017 - Correlation

$\bullet\,$ Single bunches with $19\,\mathrm{pC}$

Johannes Nadenau

BPMs

Motivation Measuring metho Types

Cavity Theory Eigenmodes Characteristics Beam positioning

CLEAR CLEAR CLEAR CBPMs

Frontend Characterization

Beam Measurements

Summary

21.09.18 35 / 43

November 2017 - Prediction

 $\bullet\,$ Single bunches with $19\,\mathrm{pC}$

Johannes Nadenau

BPMs

Motivation Measuring metho Types

Cavity Theor Eigenmodes Characteristics Beam positioning

BPMs a CLEAR CLEAR CBPMs

Frontend Characterization

Beam Measurements

Summary

21.09.18 36 / 43

November 2017 - Resolution

\bullet Single bunches with $19\,\mathrm{pC}$

> Johannes Nadenau

BPMs

Motivation Measuring metho Types

Cavity Theory Eigenmodes Characteristics Beam positioning

BPMs at CLEAR CLEAR CBPMs

Frontend Characterization

Beam Measurements

Summary

21.09.18 37 / 43

November 2017 - Resolution

- $\bullet\,$ Single bunches with $19\,\mathrm{pC}$
- $\bullet~$ Attenuation of up to $55\,\mathrm{dB}$

	Horizontal	Vertical
Settings	resolution / μ m	resolution/ μ m
ATT 16, RF 24, IF 0	19.69	4.57
ATT 16, RF 24, IF 5	3.48	2.60
ATT 0, RF 0, IF 15	13.95	3.09

> Johannes Nadenau

BPMs

Motivation Measuring methods Types

Cavity Theory Eigenmodes

Characteristics Beam positioning

BPMs at CLEAR CLEAR

Frontend Characteriza tion

Beam Measurements

Summary

21.09.18 38 / 43

June 2018 - Modifications

- $\bullet\,$ Single bunch with around $1\,\mathrm{pC}$ to decrease required attenuation
- Different settings for each channel
- Unintended: Failing BPM 830

> Johannes Nadenau

BPMs

Motivation Measuring methods Types

Cavity Theory

Characteristics Beam positionin

BPMs at CLEAR

CLEAR

Frontend Characterization

Beam Measurements

Summary

21.09.18 38 / 43

June 2018 - Correlation

- $\bullet\,$ Single bunch with around $1\,\mathrm{pC}$ to decrease required attenuation
- Different settings for each channel
- Unintended: Failing BPM 830

Johannes Nadenau

BPMs

Motivation Measuring metho Types

Cavity Theor Eigenmodes Characteristics Beam positioning

BPMs at CLEAR CLEAR CBPMs

Frontend Characterization

Beam Measurements

Summary

21.09.18 39 / 43

June 2018 - Resolution

 $\bullet\,$ Single bunch with around $1\,\mathrm{pC}$ to decrease required attenuation

	Horizontal	Vertical
Measurement	resolution / μ m	resolution/ μ m
1	64.88	6.41
2	28.62	20.26
3	1029.60	144.69

Johannes Nadenau

BPMs

Motivation Measuring metho Types

Cavity Theory Eigenmodes Characteristics Beam positioning

BPMs at CLEAR CLEAR CBPMs

Frontend Characterization

Beam Measurements

Summary

21.09.18 39 / 43

June 2018 - Resolution

3

1029.60

144.69

> Johannes Nadenau

BPMs

Motivation Measuring methods Types

Cavity Theory Eigenmodes Characteristics Beam positioning

BPMs a CLEAR CLEAR

Frontend Characterization

Beam Measurements

Summary

21.09.18 40 / 43

September 2018 - Calibration

- $\bullet\,$ Single bunch with around 0.7 $\rm pC$ to decrease required attenuation
- After some replacements 3 working BPMs
- Binary jitter

> Johannes Nadenau

BPMs

Motivation Measuring methods Types

Cavity Theory

Characteristics Beam positionin

BPMs at CLEAR

CLEAR

Frontend Characterization

Beam Measurements

Summary

21.09.18 40 / 43

September 2018 - Results

- $\bullet\,$ Single bunch with around 0.7 $\rm pC$ to decrease required attenuation
- After some replacements 3 working BPMs
- Binary jitter

> Johannes Nadenau

BPMs

Motivation Measuring methods Types

Cavity Theo Eigenmodes Characteristics Beam positioning

Count

BPMs a CLEAR CLEAR CBPMs

Frontend Characterization

Beam Measurements

Summary

21.09.18 40 / 43

September 2018 - Results

- $\bullet\,$ Single bunch with around 0.7 $\rm pC$ to decrease required attenuation
- After some replacements 3 working BPMs
- Binary jitter

	Horizontal	Vertical
Measurement	resolution / μ m	resolution/ μ m
1	96.58	20.15
2	36.62	30.60

> Johannes Nadenau

BPMs

Motivation Measuring methor Types

Cavity Theory Eigenmodes Characteristics Beam positioning

BPMs a CLEAR CLEAR

Frontend Characterization

Beam Measurements

Summary

21.09.18 41 / 43

Summary

- Electronics is characterized
- $\bullet\,$ Resolution of 2.6 μm was achieved
- Proved pickup quality
- Additional software was written
 - Automated gain measurements
 - Best settings with current setup
- Modify electronics
 - Ensure radiation hardness
 - Allow higher signal power
- Write GUI for control room

Johannes Nadenau

BPMs

Motivation Measuring metho Types

Cavity Theory Eigenmodes Characteristics Beam positioning

BPMs at CLEAR CLEAR CBPMs

Frontend Characterization

Beam Measurements

Summary

21.09.18 42 / 43

MERCI THANKS DANKE