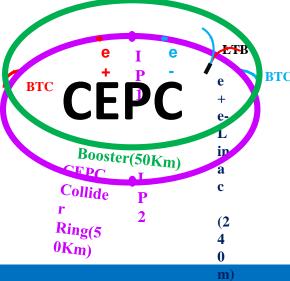
Status of IHEP distributed computing

Xiaomei ZHANG Xianghu Zhao Institute of High Energy Physics

> 9th DIRAC User Workshop London,U.K.

Reminder


- Distributed Computing (DC) in IHEP was first built for BESIII in 2012
 - Meet peek need of BESIII computing with ~3PB/5year in total
 - Put into production for BESIII in 2014
- Evolve into a general platform for multi experiments in 2016
 - JUNO : operate in prototype
 - CEPC : in production for R&D phase

BESIII (Beijing Spectrometer III at BEPCII)

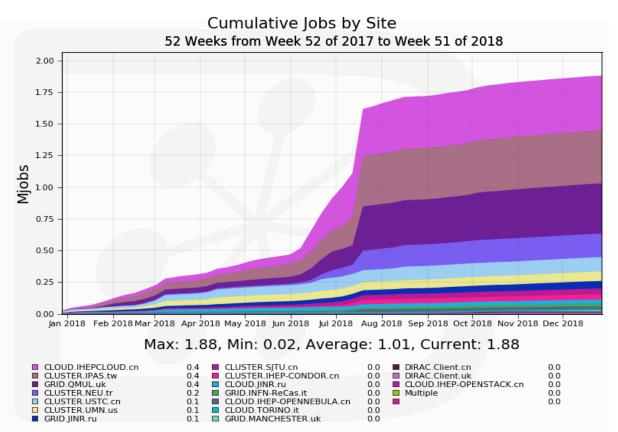
JUNO (Jiangmen Underground Neutrino Observatory)

DIRAC set-up and upgrade

- Three set-up: production, test, development
- Production set-up
 - One main CS server, One DB server
 - Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz with 16 cores, 64GB Mem with 2.5TB
 - DIRAC version: v6r20p6, VMDIRAC: v2r3-pre1
 - Plan to upgrade to v6r21 soon in new machines
 - Intel Xeon Silver 4116 CPU @ 2.10GHz with 24 cores, 128GB DDR4-2400 Memory, 4TB SAS disk
- Development and test set-up
 - Two VMs
 - DIRAC version: v6r21p2

DIRAC functionalities in use

- WMS
 - Cluster: HTCondor, SLURM, PBS
 - Grid: CreamCE
 - Cloud: OpenNebula, OpenStack
- DIRAC File Catalog (DFC)
 - Use as replica and meta-data catalog for besIII
 - Plan to use as replica catalog for juno (juno has developed its own bookkeeping)
- RMS + Transformation (TS)
 - Use as bulk replication/removal for JUNO (in prototype)
- Production system over TS
 - Organize MC Simulation and reconstruction workflow and dataflow for JUNO (in plan)
- Monitoring and Accounting
- Multi-VO

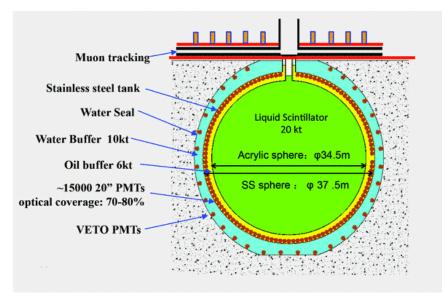

Extensions in use

- DIRAC Extensions
 - WebAppDIRAC
 - VMDIRAC to manage cloud from VMDIRACv1.0
- BESIII/JUNO Extensions
 - Task Manager to manage experiment tasks over job monitoring
 - Site Monitoring to monitor site status
 - Send and track SAM tests jobs
 - Summarize user jobs

Site	SiteType	MaskStatus	CE-Test	SE-Test	Storage Usage(%)	Efficiency(%)	Job Usage(%)	WN Status
GRID.QMUL.uk	GRID	Active	Unknown	ок	0	100	0	ок
GRID.IN2P3.fr	GRID	Active	ок					
CLUSTER.USTC.cn	CLUSTER	Active	Bad	Bad	83.9	100	0	
CLUSTER.IHEP-CON	CLUSTER	Active	Unknown	ок	61.5	100	0	ок
CLUSTER.SJTU.cn	CLUSTER	Active	Unknown	ок	61.5	100	0	
GRID.INFN-ReCas.it	GRID	Active	ок	ок	3.9	100	0	ок
CLUSTER.IPAS.tw	CLUSTER	Active	ок	ок	61.5	100	0	
GRID.MANCHESTER	GRID	Active	ок			100	0	
CLOUD, IHEP-OPEN		Active	Bad	ок	61.5	100	0	
GRID.JINR.ru	GRID	Active	ОК	ок	37	100	0	ок
CLOUD, JINRONE, ru		Active	ок	ок	0	100	0	
CLOUD.IHEPCLOUD		Active	Busy	ок	61.5	100	0	
CLOUD.JINR.ru		Active	ок	ок	37	100	0	
CLOUD, INFN-PADO		Active	ок			100	0	
CLUSTER.NEU.tr	CLUSTER	Active	Unknown	Bad	0	0	0	
CLOUD.TORINO-NE		Active	Bad			0	0	
CLUSTER.UMN.us	CLUSTER	Active	ок	Bad	61	100	0	
GRID.INFN-CNAF.it	GRID	Active	Bad	ок	0	100	0	

Production status

• About 1.88M jobs running in 2018

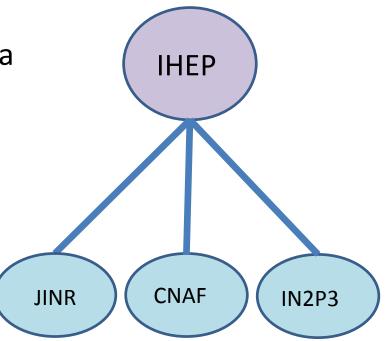


Generated on 2019-05-12 07:29:42 UTC

14 May 2019

Jiangmen Underground Neutrino Observatory

- JUNO, a multi-purpose neutrino experiment designed to measure the neutrino mass hierarchy and mixing parameters
 - Start to build in 2014, operational in 2021, located at Guangzhou province
 - Estimated to produce 2PB data/year for >10 years
 - 20 kt Liquid Scintillator detector, 700m deep underground
 - 2-3% energy resolution

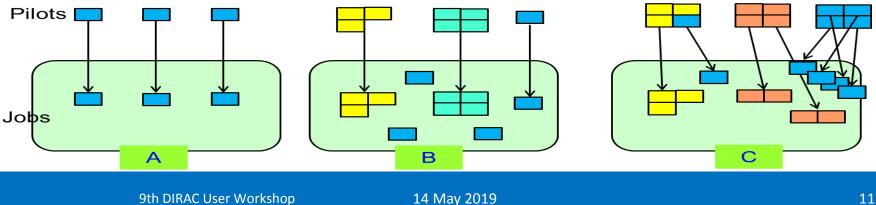


JUNO computing

- No much challenges with normal sim, rec, ana
 - Rec data ~20TB/year , Sim data ~100TB/year, Raw data ~2PB/year
 - ~10000 cores can meet the goal
- The system is planned to be designed in a reliable and simple way
 - Use DIRAC WMS and DMS services as much as possible
- Simulation of optical photons produced by muon is a special one, which poses severe constraints on both CPU time and Memory
 - CPU time >95%, memory ~8GB, > 2 hours/event
- This problem pushes JUNO to explore ways of parallelism
 - Performance optimization using parallelism with Geant4 10.x
 - Massive parallelism with GPU, achieving 1000 times speed-up
 - Fast simulation, and plan to improve it with Machine Learning
- Support of Multi-core and GPU were considered

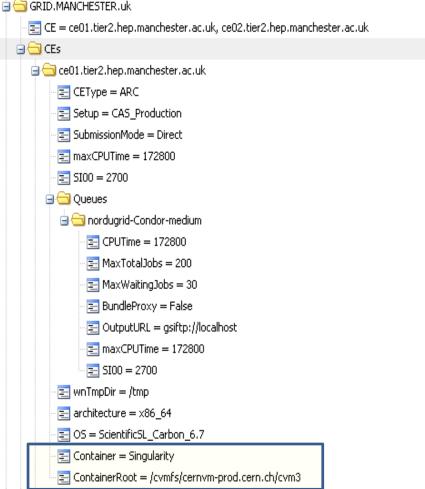
JUNO computing model

- IHEP as central centre
 - Play major role for raw data reconstruction, calibration, simulation and analysis
 - Hold central storage for all the data
- European centers
 - Hold one copy of raw data
 - Mainly for simulation and analysis
 - Possibly share efforts on reconstruction


14 May 2019

JUNO Data transfer

- Bulk transfers are required among SE of data centers
- Solution based on DIRAC DMS was tried and tested
 - DFC: register files
 - Request manager (RMS): manage queues and interface with FTS
 - Transformation: produce bulk transfers or removals with a list of files
- Testing is fine, but can be improved in some ways
 - Priority control
 - Errors tracking is not so direct
 - There are no direct links to the related FTS logs from RMS
 - Errors seen from TS and RMS is difficult to track
 - Only look into agent log
 - Better to have ways to know more details of files failed to transfer
 - Eg. TS only shows 80% complete, what about 20% failed files? Sometimes they are problematic files


Multicore scheduling

- Juno has tried on multi-core supports •
 - Customized and shared partitionable pilot modes
 - More details in Federico's talk "matching jobs to computing resources: MPs + GPU, ..."
- The prototype is quite successful, but need more efforts •
 - Resource efficiency is concerned if mixture of single-core and multicore jobs
 - Some changes with core info need to be added to monitoring and accounting
- Next step would like to put it into production if JUNO software is ready for parallelism

Singularity

- Singularity mode was tried and used in production
 - Pilot starts singularity and user jobs runs inside singularity
- Main magic is SingularityCE
 - Developed by Simon Fayer
 - We fixed it with BESIII user cases
- Why need to use Singularity
 - Site OS is not consistent with the OS required by experiment
 - Users ask for special Linux OS to run jobs (not done yet)
- Two sites in BESIII are working well with Singularity
 - Manchester
 - IHEP-HTCondor

14 May 2019

Use GPU with tags

- Testbed has been setup to try out
 - IHEP GPU farm (SLURM)
 - JINR GPU farm (SLURM)
- With new "Tags" system, CPU and GPU jobs can be successfully sent to right sites
 - "RequiredTag" and "Tag"
- But do we need more tags for matching if jobs required more?
 - GPU jobs have more requirements than CPU jobs
 - GPUModel (CudaDevice), GPUNumber (Request_gpu=1), CudaCapability (GPUVersion >=3), Memory

Summary

- IHEP distributed computing is in good status, but not much challenges in production now
- Recent work would be more focused on JUNO
 - Design of JUNO computing model
 - Production system in plan to manage its workflow and dataflow
 - Multi-core and GPU supports for parallelism of JUNO software