Approximately L conserving seesaw models: Minimal Flavour Violation and Leptogenesis

Thomas Hambye University of Brussels (ULB)

In collaboration with: B. Gavela, D. Hernandez and P. Hernandez, JHEP 09' S. Blanchet and F.-X. Josse-Michaux, JCAP 10'

Following previous works with: A. Abada, C. Biggio, F. Bonnet and B. Gavela, JHEP 07', PRD 08'

CERN, 16/09/2010

Lepton Flavour Violating processes \leftarrow (L conserving) $\longrightarrow \mu \to e\gamma, \ \tau \to \mu\gamma, \ \tau \to e\gamma, \ \mu \to eee, \ \tau \to lll, \ \mu \to e \text{ atomic conversion, } \dots$ expected small in seesaw models: dim-6 operator effect: $\mathcal{L}^{d=6} = Y_N^{\dagger} \frac{1}{M_N^2} Y_N(\bar{L}H) \partial (HL) \implies \Gamma(\mu \to e\gamma) \propto Y_N^4 \frac{m_{\mu}^5}{M_{\Psi}^4}$ $m_{\nu} \sim Y_N \, \frac{1}{M_N} \, Y_N^T \, v^2$ if $Y_N \sim 1$, $m_{\nu} = 0.1 \,\text{eV}$ if $M_N \sim 1 \,\text{TeV}$, $m_{\nu} = 0.1 \,\text{eV}$ e.g. requires $M_N \sim 10^{14} \,\text{GeV}$ e.g. requires $Y_N \sim 10^{-6}$ $\bigvee_{\Gamma(\mu \to e\gamma)} \propto Y_N^4 \, \frac{m_\mu^5}{M_N^4} \text{ very suppressed!!}$ but not necessarily: inverse seesaw models m_{ν} violate L

Approximately L conserving framework

→ assume a L conserving setup with not too large $M_N \sim 100 \text{ GeV} - 100 \text{ TeV}$ and large Yukawas $Y_N \sim 10^{-2} - 1$

 $Br(\mu \to e\gamma) \sim 10^{-11} \sim \text{experimental upper limit}$

 $m_{\nu} = 0$ \longleftarrow no L violation

- assume L is broken by a small perturbation μ and/orY'

$$\psi$$

$$m_{\nu} \sim 0.1 \,\mathrm{eV} \quad \bigstar$$

neutrino masses directly proport. to a small source of L violation μ and/or Y' rather than inversely proport. to a large mass M

Approximately L conserving type-I seesaw model

 \blacktriangleright example with n N₁ and n N₂: $L_{N_1} = +1$, $L_{N_2} = -1$

"inverse seesaw" as in Mohapatra, Valle '86
Gonzalez-Garcia, Valle '89
Branco, Grimus, Lavoura '89
Kersten, Smirnov '07
Abada, Biggio, Bonnet, Gavela, T.H. '07

 $Br(\mu \to e\gamma) \sim 10^{-11} \sim \text{experimental upper limit}$

 $m_{\nu} = 0$ \longleftarrow no L violation

Approximately L conserving type-I seesaw model

 \blacktriangleright example with n N₁ and n N₂: $L_{N_1} = +1$, $L_{N_2} = -1$

$$V_{L} \qquad N_{1} \qquad N_{2}$$

$$V_{L} \qquad 0 \qquad Y_{N} \frac{v}{\sqrt{2}} \qquad 0 \qquad M_{N}$$

$$N_{1} \qquad N_{2} \qquad V_{N} \frac{v}{\sqrt{2}} \qquad 0 \qquad M_{N} \qquad \mu \qquad 0 \qquad M_{N} \qquad M_$$

"inverse seesaw" as in Mohapatra, Valle '86
Gonzalez-Garcia, Valle '89
Branco, Grimus, Lavoura '89
Kersten, Smirnov '07
Abada, Biggio, Bonnet, Gavela, T.H. '07

 $Br(\mu \to e\gamma) \sim 10^{-11} \sim \text{experimental upper limit}$

$$m_{\nu} = -Y_N^T \frac{\mu}{M_N^2} Y_N v^2 \sim 0.1 \,\mathrm{eV}$$

Approximately L conserving type-I seesaw model

>> example with n N₁ and n N₂: $L_{N_1} = +1$, $L_{N_2} = -1$

 $Br(\mu \to e\gamma) \sim 10^{-11} \sim \text{experimental upper limit}$

$$m_{\nu} = -(Y_N'^T \frac{1}{M_N} Y_N + Y_N^T \frac{1}{M_N} Y_N') v^2 \sim 0.1 \,\mathrm{eV}$$

would be the striking sign of new physics at a nearby scale and a very strong hint for the seesaw but not necessarily a proof at all: many models can lead to it and in general the dim. 6 coefficients are not known

But ways out do exist:

• In models where several processes are related to a single $c_{d=6}^{ij}$ coefficient independently of $c_{d=5}^{ij}$ ones in case their ratios are fixed:

type-III seesaw: $Br(\mu \to e\gamma) = 1.3 \cdot 10^{-3} \cdot Br(\mu \to eee) = 3.1 \cdot 10^{-4} \cdot R^{\mu \to e}$ $Br(\tau \to \mu\gamma) = 1.3 \cdot 10^{-3} \cdot Br(\tau \to \mu\mu\mu) = 2.1 \cdot 10^{-3} \cdot Br(\tau \to e^-e^+\mu^-)$ $Br(\tau \to e\gamma) = 1.3 \cdot 10^{-3} \cdot Br(\tau \to eee) = 2.1 \cdot 10^{-3} \cdot Br(\tau^- \to \mu^-\mu^+e^-)$

 \frown proportional to the $c_{d=6}^{ij}$ coefficient:

$$\begin{aligned} |\epsilon_{e\mu}| &= \frac{v^2}{2} |Y_{\Sigma}^{\dagger} \frac{1}{M_{\Sigma}^{\dagger}} \frac{1}{M_{\Sigma}} Y_{\Sigma}|_{\mu e} \lesssim 1.1 \cdot 10^{-4} \\ |\epsilon_{\mu\tau}| &= \frac{v^2}{2} |Y_{\Sigma}^{\dagger} \frac{1}{M_{\Sigma}^{\dagger}} \frac{1}{M_{\Sigma}} Y_{\Sigma}|_{\tau\mu} \lesssim 1.5 \cdot 10^{-2} \\ |\epsilon_{e\tau}| &= \frac{v^2}{2} |Y_{\Sigma}^{\dagger} \frac{1}{M_{\Sigma}^{\dagger}} \frac{1}{M_{\Sigma}} Y_{\Sigma}|_{\tau e} \lesssim 2.4 \cdot 10^{-2} \end{aligned}$$

and similarly for type-I and type-II seesaw models

If we observe some lepton flavour viol. processes: seesaw?

 Minimal flavour violation: the flavour structure of the higher dimensional BSM induced operators can be determined from the flavour structure of the lowest dimension flavour structure

> originally assumed in the quark sector to allow for new low scale physics without flavour changing problems

> > for leptons the context is \neq : we do have an evidence for new physics (neutrino masses) but the effect is so tiny that the new physics associated is not expected to bring any flavour changing problem \Rightarrow no need for MFV to avoid flavour violation but yet would lead to predictivity

> > > \rightarrow all dim-6 induced processes could be predicted up to an overall normalization from the knowledge of $m_{\nu ij}$

Minimal Flavour Violation in lepton sector

Cirigliano, Grinstein, Isidori, Wise 05'

• 1) Large flavour violation with small L violation: a hierarchy between L-viol. scale Λ_{LN} and flavour-viol. scale Λ_F : $\Lambda_{LN} >> \Lambda_F$

• 2) The flavour structure of the dim-6 coefficients fixed by the dim-5 one

extended setup: linearly $C_{d=6} \propto C_{d=5}$ an explicit UV realization: type-I seesaw model with 2 extra assumptions: $M_N \propto \mathbb{I}$ and no CP violation so that $c_{d=6} = Y_N^{\dagger} \frac{1}{M_N^2} Y_N = \frac{1}{M_N^2} Y_N^T Y_N = \frac{1}{M_N} c_{d=5}$

A seesaw model automatically of the MFV type: the type-II model

• 2) Flavour changing L conserving processes:

$$\sum_{\substack{Y_{\Delta} \\ \downarrow \Delta \\ \downarrow \\ L}} \sum_{l} \sum_{k} c_{ijkl}^{d=6} = -\frac{1}{M_{\Delta}^2} Y_{\Delta ij}^{\dagger} Y_{\Delta kl} \propto c_{ij}^{d=5\dagger} c_{kl}^{d=5}$$

and there is effectively a separation of scale: $\Lambda_F \sim M_\Delta \longleftrightarrow \Lambda_{LN} \sim M_\Delta^2/\mu_\Delta$

MFV in type-I model? The simplest realization

B. Gavela, TH, D. Hernandez and P. Hernandez, JHEP 09'

There exists a particularly minimal and predictive MFV type-I seesaw model!

A model with 2 right-handed neutrinos: $L_{N_1} = +1$, $L_{N_2} = -1$

The simplest MFV type-I model

counting of parameters in the pure hard case:

to be compared with the $m_{\nu ij}$ matrix from 2 N's:

$m_{ u_i}$	$\rightarrow 2 \text{ real } \nu \text{ masses}$	$\leftarrow 1$ normalizat. $+ 1$ flavour param.
$ heta_{ij}$	$\rightarrow 3$ real mixing angles	$\leftarrow 3$ flavour param.
δ, α_1	$\rightarrow 1~\mathrm{CKM} + 1$ Majorana phase	$\leftarrow 2 \text{ phases}$

the full flavour structure of the model can be reconstructed from $m_{\nu ij}$! the full flavour structure of dim-6 effects can be reconstructed! this remains true in the full hard + soft case too

Predictions

Leptogenesis in approximately L conserving seesaw models???

S. Blanchet, TH and F.-X. Josse-Michaux, JCAP 10'

- at first sight very difficult:
 - leptogenesis at low scale: $M_N \sim TeV$
 - large $Y_N \implies \Gamma_N >>> H|_{T=M_N} \implies$ the N are in deep thermal equilibrium
 - L broken by a small perturbation \Rightarrow we would expect suppression of CP-asym.

at second sight: leptogenesis appears to be generically successful in these models

Apparent contradiction in approximate L models

this is what we get from usual Boltzmann equations

Apparent contradiction in approximate L models

 $Y_{L} = (n_{l} - n_{\bar{l}})/s$ "Usual" Boltzmann equations $z \equiv \frac{M_N}{T}$ $\frac{s}{z}\frac{dY_L}{dz} = \varepsilon_N \left(\frac{Y_N}{Y_N^{EQ}} - 1\right) \cdot \frac{\gamma_D}{H(T = M_N)} - \frac{Y_L}{2Y_L^{EQ}} \cdot \frac{\gamma_D}{H(T = M_N)} - 2\frac{Y_L}{Y_L^{EQ}} \cdot \frac{\gamma_{\Delta L=2}^{off-shell}}{H(T = M_N)}$ each decay produces a $\Delta L = \varepsilon_N$ each inverse decay produces a $\Delta L = -\varepsilon_N$ if more l than $\bar{l}:$ more $lH \to N~$ inverse decays than $\bar{l}H^* \to N~$ if more l than \overline{l} : more $l H \to N \to \overline{l} H^*$ processes than $\overline{l} H^* \to N \to l H$ $= \varepsilon_N \left(\frac{Y_N}{Y_N^{EQ}} - 1\right) \cdot \frac{\gamma_D}{H(T = M_N)} - 2 \frac{Y_L}{Y_L^{EQ}} \cdot \frac{\gamma_{\Delta L=2}^{Jull}}{H(T = M_N)}$ $\simeq \varepsilon_N \left(\frac{Y_N}{V_N^{EQ}} - 1\right) \cdot \frac{\gamma_D}{H(T = M_N)} - \frac{Y_L}{2Y_I^{EQ}} \cdot \frac{\gamma_D}{H(T = M_N)}$ $\sim 10^8$ \Rightarrow main condition to avoid an efficiency suppression: $\Gamma_N^{\text{TOT}} < H(T = M_N)$ huge washout

Apparent contradiction in approximate L models

but with
$$Y_N \sim 10^{-(1-2)}$$
 suppose $Y'_N = \mu_1 = \mu_2 = 0$
 \downarrow
 $\frac{\Gamma_N^{\text{TOT}}}{H(T = M_N)} \sim 10^8$ L is conserved!

⇒ how comes a decay could washout a L asymmetry if there is no L violation in the model??

Solution of the apparent contradiction

 \Rightarrow no washout if L is conserved even if the N are deeply in thermal equilibrium!! \Rightarrow In practice the washout turns out to be controlled by the $N_1 - N_2$ mass splitting:

$$\delta = \frac{M_2 - M_1}{\Gamma_{N_1}^{\text{TOT}}} << 1 \implies \gamma_{\Delta L=2}^{on-shell} = \frac{\gamma_D}{4} \cdot \frac{2\delta^2}{1 + \delta \Gamma_{N_1}^{\text{TOT}}/M_{N_1} + \delta^2} \rightarrow \text{small washout}$$
$$\delta = \frac{M_2 - M_1}{\Gamma_{N_1}^{\text{TOT}}} >> 1 \implies \gamma_{\Delta L=2}^{on-shell} = \frac{\gamma_D}{4} \longrightarrow \text{huge washout}$$
usual inverse decay term

automatic in approximate L models!

$$\begin{array}{cccc} \mathbf{v_{L}} & \mathbf{N_{1}} & \mathbf{N_{2}} \\ \mathbf{v_{L}} & \begin{pmatrix} 0 & Y_{N} \frac{v}{\sqrt{2}} & Y_{N}' \frac{v}{\sqrt{2}} \\ Y_{N} \frac{v}{\sqrt{2}} & \mu_{1} & M_{N} \\ 0 & M_{N} & \mu_{2} \end{pmatrix} \Rightarrow & \delta = \frac{M_{2} - M_{1}}{\Gamma_{N_{1}}^{\text{TOT}}} = \frac{\mu}{\Gamma_{N_{1}}^{\text{TOT}}} \\ m_{\nu} \longrightarrow (vY_{N} \ll M_{N}) \longrightarrow \frac{v^{2}}{2} Y_{N}^{2} \frac{\mu}{M_{N}^{2}} & \propto \text{ small L violating perturbations} \\ & & \downarrow \\ \text{protected by L symmetry} \end{array}$$

CP-asymmetry in approximate L models

Blanchet, TH, Josse-Michaux 10'

for $M_N \sim \text{TeV}$ a large asymmetry can be obtained only through resonance

the condition to have a resonance of the CP asymmetry is the same as to avoid washout: a small mass splitting

in the approximate L setup not only the numerator of the CP asymmetry is suppressed by the small L violating entries but also the denominator

$$\epsilon_{1\alpha} = \epsilon_{2\alpha} \simeq -\frac{|Y_{\alpha}|^2}{4\pi} \left(\sin \alpha \frac{\mu_1 \mu_2}{2\mu M} + \frac{\sum_{\beta} \operatorname{Im}(Y_{\beta} Y_{\beta}^{\prime *} e^{\mathrm{i}\phi})}{\sum_{\beta'} |Y_{\beta'}|^2} \right) f_{\text{self}}$$
$$f_{\text{self}} = \frac{a_2 - a_1}{(a_2 - a_1)^2 + \left(\sqrt{a_2 c_2} - \sqrt{a_1 c_1}\right)^2} \stackrel{\delta \ll 1}{\simeq} \frac{1}{2\delta\sqrt{c}} \qquad \begin{array}{c} a_i \equiv (M_{N_i}/M_{N_1})^2 \\ c_i \equiv (\Gamma_{N_i}^{\text{TOT}}/M_{N_1})^2 \end{array}$$

 \Rightarrow despite that the CP-asymmetry is suppressed by the small L-violating entries one gets a large enough CP-asym if: $2 \operatorname{Re}(Y_N Y'_N) / |Y^2| << \delta \equiv \frac{M_2 - M_1}{\Gamma_{N_c}^{\text{TOT}}} << 1$

Summing up: results on $\mu \to e \gamma$ imposing successful leptogenesis

- approximately L conserving seesaw models can lead to large flavour violation in agreement with small m_{ν}
- successful leptogenesis can be generically obtained:
 - a large washout of the L asymmetry can be avoided despite the N are in deep thermal equilibrium: requires a small enough mass splitting
 - a small mass splitting is a prediction of the model
 - a large enough CP-asymmetry is obtained through resonance from the same small mass splitting

 \Rightarrow an observable $\mu \rightarrow e\gamma$ process is compatible with successful leptogenesis (without SUSY)

Backup

The 3 leptogenesis ingredients

• 1) The CP-asymmetry: \leftarrow averaged ΔL produced per N decay

$$\varepsilon_{N_i} = \sum_k \frac{\Gamma(N_i \to L_k H) - \Gamma(N_i \to \bar{L}_k H^*)}{\Gamma_{N_i}^{\text{TOT}}}$$

The 3 leptogenesis ingredients

(2) The efficiency
$$\eta: \left.\frac{n_L}{s} = \varepsilon_{N_i} \cdot \left(\frac{n_{N_i}}{s}\right)\right|_{T>>M_{N_i}} \cdot \eta$$

 $\eta \sim 1 \leftarrow \text{out-of-equilibrium}$
 $\eta \sim 1 \leftarrow \text{thermal equilibrium}$
 $\eta < 1 \leftarrow \text{thermal equilibrium}$
 $rac{1}{l} \leftarrow \text{thermal equilibrium$

 \Rightarrow main condition to avoid an efficiency suppression: $\Gamma_N^{\text{TOT}} < H(T = M_N)$

The 3 leptogenesis ingredients

• 3) The L to B conversion from SM sphalerons:

Above the EW scale B+L violating but B-L conserving SM sphalerons are in thermal equilibrium

 \Rightarrow put B+L to ~ 0 but conserving B-L:

3 nus +3 N DFV case

 $\begin{pmatrix} \nu_e, \nu_\mu, \nu_\tau, N_1, N_2, N_3 \end{pmatrix} \\ \begin{pmatrix} 0 & 0 & 0 & c & 0 & 0 \\ 0 & 0 & 0 & d & 0 & 0 \\ 0 & 0 & 0 & e & 0 & 0 \\ c & d & e & 0 & 0 & a \\ 0 & 0 & 0 & 0 & b & 0 \\ 0 & 0 & 0 & a & 0 & 0 \end{pmatrix}$

Details on delta L=2 scattering calculation:

$$\gamma_{\Delta L=2,\alpha}^{\mathrm{on}} = \frac{\gamma_{N,\alpha}^D}{4} \cdot 2\left(1 + 2\delta\sqrt{c} - \frac{1 + 3\delta\sqrt{c}}{1 + \delta\sqrt{c} + \delta^2} + \mathcal{O}(Y'^2,\mu^2)\right) = \frac{\gamma_{N,\alpha}^D}{4} \cdot \frac{2\,\delta^2}{1 + \sqrt{c}\delta + \delta^2}$$

$$K_{\alpha}^{\text{eff}} \equiv K_{\alpha} \cdot \frac{\delta^2}{1 + \sqrt{c\delta + \delta^2}} \stackrel{\delta \ll 1}{\simeq} K_{\alpha} \cdot \delta^2$$

$$h_{1\alpha} \simeq \frac{\mathrm{i}}{\sqrt{2}} \mathrm{e}^{-\mathrm{i}(\phi-\lambda)/2} \left[\left(1 + \frac{\mu_2^2 - \mu_1^2}{4M\mu} \right) \mathrm{e}^{\mathrm{i}\phi} Y_\alpha - Y'_\alpha \right] \qquad \lambda = \sin \alpha \frac{\mu_1 \mu_2}{\mu M}$$
$$h_{2\alpha} \simeq \frac{1}{\sqrt{2}} \mathrm{e}^{-\mathrm{i}(\phi+\lambda)/2} \left[\left(1 - \frac{\mu_2^2 - \mu_1^2}{4M\mu} \right) \mathrm{e}^{\mathrm{i}\phi} Y_\alpha + Y'_\alpha \right]$$