Kaons, Lattice QCD and the Standard Model

High Performance Computing in High Energy Physics

Central China Normal University

September 19, 2018

Norman H. Christ
Columbia University
RBC and UKQCD Collaborations

Outline

- Quick review of the standard model
- Lattice QCD: methods and status
- Four precision tests of the standard model:

1) $K \rightarrow \pi \pi$ decay and direct $\& R$: $\left.\varepsilon^{\prime}\right\}$ 1st-order
2) $K_{L}-K_{S}$ mass difference
3) Long distance contribution to ε_{K}
$2^{\text {nd }}$-order
4) Long distance contribution to rare kaon decay: $K^{+} \rightarrow \pi^{+} \boldsymbol{v} \overline{\boldsymbol{v}}$

Cabibbo-Kobayashi-Maskawa mixing

- $W^{ \pm}$emission scrambles the quark flavors

$$
\left(\begin{array}{c}
u \\
c \\
t
\end{array}\right) \stackrel{W^{ \pm}}{\longleftrightarrow}\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right)
$$

Cabibbo-Kobayashi-Maskawa mixing

- $W^{ \pm}$emission scrambles the quark flavors

$$
\begin{aligned}
&\left(\begin{array}{c}
u \\
c \\
t
\end{array}\right) \stackrel{W^{ \pm}}{\longleftrightarrow}\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right) \\
&\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)=\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\bar{\rho}-i \bar{\eta}) \\
-\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
A \lambda^{3}(1-\bar{\rho}-i \bar{\eta}) & -A \lambda^{2} & 1
\end{array}\right)+\mathcal{O}\left(\lambda^{4}\right) \\
& \lambda=0.22535 \pm 0.00065, \quad A=0.811_{-0.012}^{+0.022},
\end{aligned}
$$

Cabibbo-Kobayashi-Maskawa mixing

- $W^{ \pm}$emission scrambles the quark flavors

$$
\begin{aligned}
& \left(\begin{array}{c}
u \\
c \\
t
\end{array}\right) \stackrel{W^{ \pm}}{\longleftrightarrow}\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right) \\
& \left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)=\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\bar{\rho}-i \bar{\eta}) \\
-\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
A \lambda^{3}(1-\bar{\rho}-i \bar{\eta}) & -A \lambda^{2} & 1
\end{array}\right)+\mathcal{O}\left(\lambda^{4}\right) \\
& \begin{array}{c}
\lambda=0.22535 \pm 0.00065, \quad A=0.811_{-0.012}^{+0.022}, \\
\bar{\rho}=0.131_{-0.013}^{+0.026},
\end{array} \quad \begin{array}{c}
\text { CP } \\
\bar{\eta}=0.345_{-0.014}^{+0.013} .
\end{array} \\
& \text { Wuhan 09/19/2018 }
\end{aligned}
$$

State-of-the-art Lattice QCD

Lattice QCD

- Introduce a space-time lattice.
- Evaluate the Euclidean Feynman path integral
- Study $e^{-H_{Q C D} t}$
- Precise non-perturbative formulation
- Capable of numerical evaluation

$$
\sum_{n}\langle n| e^{-H(T-t)} \mathcal{O} e^{-H t}|n\rangle=\int d\left[U_{\mu}(n)\right] e^{-\mathcal{A}[U]} \operatorname{det}(D+m) \mathcal{O}[U](t)
$$

- Evaluate using Monte Carlo importance sampling with hybrid, molecular dynamics/Langevin evolution.

Lattice QCD - 2018

- Physical quark masses (ChPT not needed)
- Chiral quarks (doubling problem solved)
- Large physical volumes: (6-10 fm) ${ }^{3}$
- Small lattice spacing: $1 / a=2.4 \mathrm{GeV}$
$-\left(\Lambda_{\mathrm{QCD}} a\right)^{2}$ effects $<1 \%$
- $\left(m_{\text {charm }} a\right)^{2}$ effects $\sim 5-15 \%$:

QCD in Euclidean space

- Euclidean $e^{-H_{Q C D}{ }^{t}}$ projects onto the ground state.

- Treat two-particle states using Luscher's finite-volume analysis
- Finite-volume energy shifts determine scattering phase shifts.
- Must work below multi-particle thresholds
- Two-particle state of interest may not be the lowest energy state
- Extra problems for second-order weak calculations

Lattice QCD

$$
\sum_{n}\langle n| e^{-H(T-t)} \mathcal{O} e^{-H t}|n\rangle=\int d\left[U_{\mu}(n)\right] e^{-\mathcal{A}[U]} \operatorname{det}(D+m) \mathcal{O}[U](t)
$$

- Large computational challenge:
- For a $64^{3} \times 128$ lattice: Integrate over one billion variables
- Spin-1/2 quarks are represented as 4-D states on the boundary of a 5-D volume.
- Integrand contains the determinant
 of a (10 Billion) x (10 Billion) matrix
- Fast code running on 32K nodes of Mira sustains one Petaflops [1015 (adds + mults)/sec]
- Broad collaboration and substantial resources needed.

Support for Lattice QCD in the US

- Leadership class machines
- Separate DOE and NSF installations
- Allocated based on science promise
- Approx 10\% devoted to Lattice QCD
- Computer centers are government-funded to solve critical science problems.
- They are not supported by collecting money for computer cycles.
- USQCD is a federation of nearly all LQCD researchers in the US.
- Plan, advocate and execute a national program
- Exploit dedicated capacity resources at BNL, JLab and FNAL for smaller projects.

Mira, 2012, 10 Pflops
\downarrow
 (\$2.5M/year from DOE.)

The RBC \& UKOCD collaborations

$B N L$ and RBRC

Mattia Bruno
Tomomi Ishikawa
Taku Izubuchi
Luchang Jin
Chulwoo Jung
Christoph Lehner
Meifeng Lin
Hiroshi Ohki
Shigemi Ohta (KEK)
Amarjit Soni
Sergey Syritsyn
Columbia University
Ziyuan Bai
Norman Christ
Duo Guo
Christopher Kelly
Bob Mawhinney
David Murphy
Masaaki Tomii

KEK

Julien Frison
University of Liverpool
Nicolas Garron
Peking University
Xu Feng
University of Southampton
Jonathan Flynn
Vera Guelpers
James Harrison
Andreas Juettner
Andrew Lawson
Edwin Lizarazo
Chris Sachrajda

York University (Toronto)

Renwick Hudspith

Precision tests of the Standard Model

$K \rightarrow \pi \pi$ Decay

$K^{0}-\overline{K^{0}}$ mixing

- $\Delta S=1$ weak decays allow K^{0} and $\overline{K^{0}}$ to decay to the same $\pi \pi$ state.
- Resulting mixing described by Wigner-Weisskopf

$$
i \frac{d}{d t}\binom{K^{0}}{\bar{K}^{0}}=\left\{\left(\begin{array}{ll}
M_{00} & M_{0 \overline{0}} \\
M_{\overline{00}} & M_{\overline{00}}
\end{array}\right)-\frac{i}{2}\left(\begin{array}{ll}
\Gamma_{00} & \Gamma_{0 \overline{0}} \\
\Gamma_{\overline{0} 0} & \Gamma_{\overline{00}}
\end{array}\right)\right\}\binom{K^{0}}{\bar{K}^{0}}
$$

- Decaying states are mixtures of K^{0} and $\overline{K^{0}}$

$$
\begin{array}{lc}
\left|K_{S}\right\rangle=\frac{K_{+}+\bar{\epsilon} K_{-}}{\sqrt{1+|\bar{\epsilon}|^{2}}} & \bar{\epsilon}=\frac{i}{2}\left\{\frac{\operatorname{Im} M_{0 \overline{0}}-\frac{i}{2} \operatorname{Im} \Gamma_{0 \overline{0}}}{\operatorname{Re} M_{0 \overline{0}}-\frac{i}{2} \operatorname{Re} \Gamma_{0 \overline{0}}}\right\} \\
\left|K_{L}\right\rangle=\frac{K_{-}+\bar{\epsilon} K_{+}}{\sqrt{1+|\bar{\epsilon}|^{2}}} & \begin{array}{c}
\text { Indirect CP } \\
\text { violation }
\end{array}
\end{array}
$$

CP violation

- CP violating, experimental amplitudes:

$$
\begin{aligned}
\eta_{+-} & \equiv \frac{\left\langle\pi^{+} \pi^{-}\right| H_{w}\left|K_{L}\right\rangle}{\left\langle\pi^{+} \pi^{-}\right| H_{w}\left|K_{S}\right\rangle}=\epsilon+\epsilon^{\prime} \\
\eta_{00} & \equiv \frac{\left\langle\pi^{0} \pi^{0}\right| H_{w}\left|K_{L}\right\rangle}{\left\langle\pi^{0} \pi^{0}\right| H_{w}\left|K_{S}\right\rangle}=\epsilon-2 \epsilon^{\prime}
\end{aligned}
$$

- Where: $\epsilon=\bar{\epsilon}+i \frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}$

Indirect: $|\varepsilon|=(2.228 \pm 0.011) \times 10^{-3}$
Direct: $\operatorname{Re}\left(\varepsilon^{\prime} / \varepsilon\right)=(1.66 \pm 0.23) \times 10^{-3}$

$K \rightarrow \pi \pi$ and CP violation

- Final $\pi \pi$ states can have $/=0$ or 2 .

$$
\begin{array}{rlrl}
\langle\pi \pi(I=2)| H_{w}\left|K^{0}\right\rangle & =A_{2} e^{i \delta_{2}} & \Delta I=3 / 2 \\
\langle\pi \pi(I=0)| H_{w}\left|K^{0}\right\rangle & =A_{0} e^{i \delta_{0}} & & \Delta I=1 / 2
\end{array}
$$

- CP symmetry requires A_{0} and A_{2} be real.
- Direct CP violation in this decay is characterized by:

$$
\epsilon^{\prime}=\frac{i e^{\delta_{2}-\delta_{0}}}{\sqrt{2}}\left|\frac{A_{2}}{A_{0}}\right|\left(\frac{\operatorname{Im} \boldsymbol{A}_{2}}{\operatorname{Re} \boldsymbol{A}_{2}}-\frac{\operatorname{Im} \boldsymbol{A}_{0}}{\operatorname{Re} \boldsymbol{A}_{0}}\right) \quad \begin{array}{|c|}
\begin{array}{c}
\text { Direct CP } \\
\text { violation }
\end{array} \\
\hline
\end{array}
$$

Low Energy Effective Theory

- Represent weak interactions by local four-quark Lagrangian $\mathcal{H}^{\Delta S=1}=\frac{G_{F}}{\sqrt{2}} V_{u d} V_{u s}^{*}\left\{\sum_{i=1}^{10}\left[z_{i}(\mu)+\tau y_{i}(\mu)\right] Q_{i}\right\}$
- $\tau=-\frac{V_{t d} V_{t s}^{*}}{V_{u d} V_{u s}^{*}}=(1.543+0.635 i) \times 10^{-3}$
- $V_{q q^{\prime}}$ CKM matrix elements
- z_{i} and $y_{i}-$ Wilson Coefficients
- Q_{i} - four-quark operators

Local four quark operators

- Current-current operators

$Q_{1} \equiv\left(\bar{s}_{\alpha} d_{\alpha}\right)_{V-A}\left(\bar{u}_{\beta} u_{\beta}\right)_{V-A}$
$Q_{2} \equiv\left(\bar{s}_{\alpha} d_{\beta}\right)_{V-A}\left(\bar{u}_{\beta} u_{\alpha}\right)_{V-A}$
- QCD Penguins

$Q_{3} \equiv\left(\bar{s}_{\alpha} d_{\alpha}\right)_{V-A} \sum_{q=u, d, s}\left(\bar{q}_{\beta} q_{\beta}\right)_{V-A}$
$Q_{4} \equiv\left(\bar{s}_{\alpha} d_{\beta}\right)_{V-A} \sum_{q=u, d, s}\left(\bar{q}_{\beta} q_{\alpha}\right)_{V-A}$
$Q_{5} \equiv\left(\bar{s}_{\alpha} d_{\alpha}\right)_{V-A} \sum_{q=u, d, s}\left(\bar{q}_{\beta} q_{\beta}\right)_{V+A}$
$Q_{6} \equiv\left(\bar{s}_{\alpha} d_{\beta}\right)_{V-A} \sum_{q=u, d, s}\left(\bar{q}_{\beta} q_{\alpha}\right)_{V+A}$

Lattice calculation of $\langle\pi \pi| H_{W}|K\rangle$

- The operator product $\bar{d}(x) s(x)$ easily creates a kaon.
- Use finite-volume energy quantization (Lellouch-Luscher) and adjust L so that $n^{\text {th }}$ excited state obeys: $E_{\pi \pi}^{(n)}=M_{K}$

$$
\left\langle\pi^{+} \pi^{-}\right| H_{W}\left|K^{0}\right\rangle \quad \propto \quad\left\langle\bar{d} u\left(t_{\pi_{1}}\right) \bar{u} d\left(t_{\pi_{2}}\right) H_{W}\left(t_{\mathrm{op}}\right) \bar{d} u\left(t_{K}\right)\right\rangle
$$

- Use boundary conditions on the quarks: $E_{\pi \pi}{ }^{\text {(gnd) }}=M_{K}$
- For $(\pi \pi)_{l=2}$ make d anti-periodic
- For $(\pi \pi)_{l=0}$ use G-parity boundary conditions

Calculation

 of A_{2}
$\Delta I=3 / 2$ - Continuum Results

(M. Lightman, E. Goode T. Janowski)

- Use two large ensembles to remove a^{2} error ($m_{p}=135 \mathrm{MeV}$, $\mathrm{L}=5.4 \mathrm{fm}$)
- $48^{3} \times 96,1 / a=1.73 \mathrm{GeV}$
- $64^{3} \times 128,1 / a=2.28 \mathrm{GeV}$

- Continuum results:
- $\operatorname{Re}\left(A_{2}\right)=1.50\left(0.04_{\text {stat }}\right)(0.14)_{\text {syst }} \times 10^{-8} \mathrm{GeV}$
- $\operatorname{Im}\left(A_{2}\right)=-6.99(0.20)_{\text {stat }}(0.84)_{\text {syst }} \times 10^{-13} \mathrm{GeV}$
- Experiment: $\operatorname{Re}\left(A_{2}\right)=1.479(4) 10^{-8} \mathrm{GeV}$
- $E_{\pi \pi} \rightarrow \delta_{2}=-11.6(2.5)(1.2)^{\circ}$
- [Phys.Rev. D91, 074502 (2015)]

Calculation of A_{0} and ε^{\prime}

Overview of 2015 calculation (Chris Kelly and Daiqian Zhang)

- Use $32^{3} \times 64$ ensemble
$-1 / a=1.3784(68) \mathrm{GeV}, L=4.53 \mathrm{fm}$.
- G-parity boundary condition in 3 directions
- 216 configurations separated by 4 time units
- Achieve essentially physical kinematics:
- $M_{\pi}=143.1(2.0)$
- $M_{K}=490.6(2.2) \mathrm{MeV}$
- $E_{\pi \pi}=498(11) \mathrm{MeV}$

$I=0 K \rightarrow \pi \pi$ with $E_{\pi \pi}=M K$ (Chris Kelly \& Daiqian Zhang)

- Use G-parity BC to obtain $p_{\pi}=205 \mathrm{MeV}$ (Changhoan Kim, hep-lat/0210003)
$-G=C e^{i \pi l y}$
- Non-trivial: $\binom{u}{d} \rightarrow\binom{\bar{d}}{-\bar{u}}$
- Gauge fields obey C BC

- Extra $I=1 / 2, s^{\prime}$ quark adds $e^{-m_{K} L}$ error
- Must take non-local square root of s - s^{\prime} determinant.
- Tests: f_{K} and B_{K} correct within errors.

$I=0, \pi \pi-\pi \pi$ correlator

- Determine normalization of $\pi \pi$ interpolating operator
- Determine energy of finite volume, $I=0, \pi \pi$ state: $E_{\pi \pi}=498(11) \mathrm{MeV}$
- Implies / = $0 \pi \pi$ phase shift: $\delta_{0}=23.8(4.9)(2.2)^{\circ}$
- Dispersion theory result: $\delta_{0}=\sim 35^{\circ}$ [G. Colangelo, et al.]

$I=0 K \rightarrow \pi \pi$ matrix elements

- Vary time separation between H_{w} and $\pi \pi$ operator.
- Show data for all $K-H_{W}$ separations $t_{Q}-t_{K} \geq 6$ and $t_{\pi \pi}-t_{K}=10,12,14,16$ and 18.
- Fit correlators with $t_{\pi \pi}-t_{Q} \geq 4$
- Obtain consistent results for $t_{\pi \pi}-t_{Q} \geq 3$ or 5

Systematic errors

Description	Error
Operator renormalization	15%
Wilson coefficients	12%
Finite lattice spacing	12%
Lellouch-Luscher factor	11%
Finite volume	7%
Parametric errors	5%
Excited states	5%
Unphysical kinematics	3%
Total	27%

Results

Determine the complex $\Delta I=1 / 2$ amplitude A_{0}

$$
\begin{aligned}
& \operatorname{Re}\left(A_{0}\right)=\left(4.66 \pm 1.00_{\text {stat }} \pm 1.26_{\text {sys }}\right) \times 10^{-7} \mathrm{GeV} \\
& \operatorname{Expt:} \quad(3.3201 \pm 0.0018) \times 10^{-7} \mathrm{GeV} \\
& \operatorname{Im}\left(A_{0}\right)=\left(-1.90 \pm 1.23_{\text {stat }} \pm 1.08_{\text {sys }}\right) \times 10^{-11} \mathrm{GeV}
\end{aligned}
$$

Calculate $\operatorname{Re}\left(\varepsilon^{\prime} / \varepsilon\right)$:
$\operatorname{Re}\left(\varepsilon^{\prime} / \varepsilon\right)=\left(1.38 \pm 5.15_{\text {stat }} \pm 4.59_{\text {sys }}\right) \times 10^{-4}$
Expt.: $(16.6 \pm 2.3) \times 10^{-4}$
2.1σ difference
[Phys. Rev. Lett. 115 (2015) 212001]

Extend and improve calculation

 (Chris Kelly and Tianle Wang)$\sqrt{ }-$ Increase statistics: $216 \rightarrow 1400$ configs.

- Reduce statistical errors
- Allow in depth study of systematic errors
\checkmark - Study operators neglected in our NPR implementation
\checkmark Use step-scaling to allow perturbative matching at a higher energy
- Use an expanded set of $\pi \pi$ operators
- Use X-space NPR to cross charm threshold (Masaaki Tomii).

Adding more statistics

- Increasing statistics: $216 \rightarrow 1400$ configs.
- $\pi \pi-\pi \pi$ correlator well-described by a single $\pi \pi$ state
$-\delta_{0}=23.8(4.9)(2.2)^{\circ} \rightarrow 19.1(2.5)(1.2)^{\circ} ? ?$
$\chi^{2} / D o F=1.6$

Adding more $\pi \pi$ operators

- Adding a second σ-like ($\bar{u} u+\overline{d d})$ operator reveals a second state!
- If only one state, 2×2 correlator matrix will have determinant 0 . For $t_{f}-t_{i}=5$:

$$
\operatorname{det}\left(\begin{array}{cc}
\left\langle\pi \pi\left(t_{f}\right) \pi \pi\left(t_{i}\right)\right\rangle & \left\langle\pi \pi\left(t_{f}\right) \sigma\left(t_{i}\right)\right\rangle \\
\left\langle\sigma\left(t_{f}\right) \pi \pi\left(t_{i}\right)\right\rangle & \left\langle\sigma\left(t_{f}\right) \sigma\left(t_{i}\right)\right\rangle
\end{array}\right)=0.439(50)
$$

	$\mathrm{E} 0(\mathrm{MeV})$	δ	amplitude
$\operatorname{sim}-\mathrm{fit}(5-10)$	$483.1(1.4)(2.7)$	$30.9(1.5)(3.0))$	$11.86(11)(12)$
GEVP (6.3)	$475.6(2.6)(2.7)$	$32.8(1.2)(3.0)$	$11.52(15)(12)$
Dispersion	474.6	35.0	

$\mathrm{I}=0 \pi \pi$ Scattering

- Combine moving pions to create states with $p_{c m} \neq 0$, giving more values for $E_{c m}$:

Extend and improve calculation (Chris Kelly and Tianle Wang)

- Extend $\pi \pi \rightarrow \pi \pi$ and $K \rightarrow \pi \pi$ calculation:
- Use three operators: $(\pi \pi)_{\text {rel }=235}, \sigma,(\pi \pi)_{\text {rel }=449}$
- Currently 134 configurations
- Improve the calculation of $\mathrm{re}\left(A_{0}\right)$ and ε^{\prime}
- Expect results by the end of the year.

- $K \rightarrow \pi \pi$
- $K \rightarrow \sigma$

Add E\&M corrections (Xu Feng)

- Avoid QED L_{L}, instead use:
- Use

$$
\begin{aligned}
& \text { - Use } \quad V_{T}(r)=\left\{\begin{array}{cc}
\frac{e^{2}}{r} & r \leq R_{T} \\
0 & r>R_{T}
\end{array}\right. \\
& \text { - Choose } R_{\text {strong }}<R_{T}<L / 2
\end{aligned}
$$

- Standard two-channel, finite-volume quantization can be employed.
- Missing long-distance effects, including $\eta \ln (2 k r)$ term, cancel in the ratios η_{+-}, η_{00} and ε^{\prime}

$$
\begin{aligned}
& \eta_{+-} \equiv \frac{{ }^{\text {out }}\left\langle(\pi \pi)_{+-}^{\gamma}\right| H_{W}\left|K_{L}\right\rangle}{\text { out }\left\langle(\pi \pi)_{+-}^{\gamma}\right| H_{W}\left|K_{S}\right\rangle} \quad \eta_{00} \equiv \frac{{ }^{\text {out }}\left\langle(\pi \pi)_{00}^{\gamma}\right| H_{W}\left|K_{L}\right\rangle}{\text { out }\left\langle(\pi \pi)_{00}^{\gamma}\right| H_{W}\left|K_{S}\right\rangle} \\
& \epsilon^{\prime}=\frac{1}{3}\left(\eta_{+-}-\eta_{00}\right)=\frac{\sin 2 \theta}{\sin 2 \theta^{\gamma}} \frac{i e^{i\left(\delta_{2}^{\gamma}-\delta_{0}^{\gamma}\right)}}{\sqrt{2}} \frac{\operatorname{Re} A_{2}^{\gamma}}{\operatorname{Re} A_{0}^{\gamma}}\left(\frac{\operatorname{Im} A_{2}^{\gamma}}{\operatorname{Re} A_{2}^{\gamma}}-\frac{\operatorname{Im} A_{0}^{\gamma}}{\operatorname{Re} A_{0}^{\gamma}}\right) \\
& \text { Wuhan 09/19/2018 }
\end{aligned}
$$

$K^{0}-\overline{K^{0}}$ mixing $\Delta M_{K} \& \varepsilon_{K}$

$K^{0}-\overline{K^{0}}$ Mixing

- CP conserving: $p \leq m_{c}$

$$
m_{K_{S}}-m_{K_{L}}=2 \operatorname{Re}\left\{M_{0 \overline{0}}\right\}
$$

Wuhan 09/19/2018

$K^{0}-\overline{K^{0}}$ Mixing

- $\Delta S=1$ weak decay allows K^{0} and $\overline{K^{0}}$ to decay to the same $\pi-\pi$ state
- Resulting mixing described by WignerWeisskopf:

$$
i \frac{d}{d t}\binom{K^{0}}{\bar{K}_{0}^{0}}=\left\{\left(\begin{array}{cc}
M_{00} & M_{0 \overline{0}} \\
M_{\overline{\overline{0}}} & M_{\overline{00}}
\end{array}\right)-\frac{i}{2}\left(\begin{array}{cc}
\Gamma_{00} & \Gamma_{0 \overline{0}} \\
\Gamma_{\overline{0} 0} & \Gamma_{\overline{00}}
\end{array}\right)\right\}\binom{K^{0}}{\bar{K}^{0}}
$$

where

$$
\begin{aligned}
& \Gamma_{i j}=2 \pi \sum_{\alpha} \int_{2 m_{\bar{K}}}^{\infty} d E\langle i| H_{W}|\alpha(E)\rangle\langle\alpha(E)| H_{W}|j\rangle \gamma\left(E-m_{K}\right) \\
& M_{i j}=\sum_{\alpha} \mathcal{P} \int_{2 m_{\pi}}^{\infty} d E \frac{\langle i| H_{W}|\alpha(E)\rangle\langle\alpha(E)| H_{W}|j\rangle}{m_{K}-E}
\end{aligned}
$$

Lattice Version

- Evaluate standard, Euclidean, $2^{\text {nd }}$ order $\overline{K^{0}}-K^{0}$ amplitude:
$\mathcal{A}=\langle 0| T\left(K^{0}\left(t_{f}\right) \frac{1}{2} \int_{t_{a}}^{t_{b}} d t_{2} \int_{t_{a}}^{t_{b}} d t_{1} H_{W}\left(t_{2}\right) H_{W}\left(t_{1}\right) K^{0 i}\left(t_{i}\right)\right)|0\rangle$

Interpret Lattice Result

$$
\begin{aligned}
& \text { (1.) (2.) } \\
& \mathcal{A}=N_{K_{K}^{2}}^{2} e^{\left.-M_{K}(t)-t\right)} \sum_{n} \frac{\left\langle\bar{K}^{0}\right| H_{W}|n\rangle\langle n| H_{W}\left|K^{0}\right\rangle}{M_{K}-E_{n}}\left(-\left(t_{b}-t_{a}\right)-\frac{1}{M_{K}-E_{n}}\right. \\
& \text { 1. } \Delta m_{K}{ }^{\mathrm{FV}} \\
& \left.+\frac{e^{\left(M_{K}-E_{n}\right)\left(t_{b}-t_{a}\right)}}{M_{K}-E_{n}}\right)
\end{aligned}
$$

2. Uninteresting constant
3. Growing or decreasing exponential: states with $E_{n}<m_{K}$ must be removed!

- Finite volume correction:

$$
\left.M_{K_{L}}-M_{K_{S}}=2 \sum_{n} \frac{\left\langle\bar{K}^{0}\right| H_{W}|n\rangle\langle n| H_{W}\left|K^{0}\right\rangle}{M_{K}-E_{n}}-\left.2 \frac{d\left(\phi+\delta_{0}\right)}{d k}\right|_{m_{K}}\left|\left\langle n_{0}\right| H_{W}\right| K^{0}\right\rangle\left.\left.\right|^{2} \cot \left(\phi+\delta_{0}\right)\right|_{M_{K}}
$$

(N.H. Christ, X. Feng, G. Martinelli, C.T. Sachrajda, arXiv:1504.01170)

$K_{L}-K_{S}$ mass

difference

$K_{L}-K_{S}$ mass difference

- $M_{K_{L}}-M_{K_{S}}=3.483(6) \times 10^{-12} \mathrm{MeV}$: sensitive to 1000 TeV scale physics.
- Perturbative result integrates out charm and shows poor convergence (Brod and Gorbahn).
- Finite when charm quark is included (GIM).

ΔM_{K} Preliminary Results (Ziyuan Bai \& Bigeng Wang)

	$\Delta M_{K} \times 10^{+12} \mathrm{MeV}$
ΔM_{K}	$5.8(1.7)$
Δ_{FV}	$0.27(18)$
Expt.	$3.483(6)$

- Physical quark masses
- $57 \rightarrow 151$ configurations
- $m_{c}{ }^{M S}(2 \mathrm{GeV}) \sim 1.2 \mathrm{MeV}, M_{\pi}=138 \mathrm{MeV}$
- $64^{3} \times 128,1 / a=2.36 \mathrm{GeV}$
- Uncorrelated fit: $10 \leq T \leq 20$
- FV correction $\sim 5 \%$
- a^{2} errors 5-10\%

Long distance part of ε_{K}

$K^{0}-\bar{K}^{0}$ mixing: Indirect CP Violation

- CP violating: $p \sim m_{t} \quad \epsilon_{K}=\frac{i}{2}\left\{\frac{\operatorname{Im} M_{0 \overline{0}}-\frac{i}{2} \operatorname{Im} \Gamma_{0 \overline{0}}}{\operatorname{Re} M_{0 \overline{0}}-\frac{i}{2} \operatorname{Re} \Gamma_{0 \overline{0}}}\right\}+i \frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}$

- Where $\left|\varepsilon_{K}\right|=(2.228 \pm 0.011) \times 10^{-3}$
- Short distance prediction [W.Lee, et al. 1710.06614]: $\left|\varepsilon_{K}\right|=1.58 \pm 0.16 \quad\left(V_{c b}\right.$ dominant error)
- Long distance estimate [Buras, et al. 1002.3612] : results in 6\% reduction

New $\Delta S=2$ counter term (Ziyuan Bai)

- Subtract $X_{i j}(\mu)\left(\bar{\gamma} \gamma^{\nu}\left(1-\gamma^{5}\right) d\right)\left(\bar{s} \gamma^{\nu}\left(1-\gamma^{5}\right) d\right)$ to make off-shell Greens function vanish at $p_{i}^{2}=\mu_{R I}{ }^{2}$
- Define infrared-safe Rome-Southampton normalization for bi-local operator.

Exploratory calculation

- Use $24^{3} \times 64,1 / a=1.73 \mathrm{GeV}$ ensemble
- $m_{\pi}=329 \mathrm{MeV}, m_{K}=575 \mathrm{MeV}, m_{c}=941 \mathrm{MeV}$ (0.363/a)
- Average over 64 separate, time-translated measurements on 200 configurations.
- Study 1.4 GeV $\leq \mu \leq 2.6 \mathrm{GeV}$
- Find $\Delta \varepsilon_{\underline{K}} \underline{L D}=0.108(76) \times 10^{-3}$ a 5% correction.

Rare Kaon Decays $K^{+} \rightarrow \pi^{+} v \bar{v}$

$$
\begin{gathered}
K^{+} \rightarrow \pi^{+} v \nabla \\
(\text { Xu Feng })
\end{gathered}
$$

- Flavor changing neutral current
- Allowed in the Standard Model only in second order
- Short distance dominated

- Target of NA62 at CERN
- 100 events in 2-3 years
- Test Standard Model prediction at 10\% level
- Use lattice for long distance
 part: 5\% effect?

$K^{+} \rightarrow \pi^{+} v \bar{v}$ in the Standard Model

- Factors of $\frac{1}{M_{W}^{4}}$ or $\frac{1}{M_{W}^{2} M_{Z}^{2}}$ force the largest contribution to come from short distance

Lattice $\left\{\bullet\right.$ Long distance part $\sim \frac{m_{c}^{2}}{M_{W}^{4}}$

$K^{+} \rightarrow \pi^{+} \nu \bar{v}$: Effect of bilocal operator

$$
\begin{array}{cc}
\text { Bilocal } & \text { Local } \\
\mathcal{A}\left(K^{+} \rightarrow \pi^{+} \nu \bar{v}\right)=\left\langle\pi^{+} \nu \bar{v}\right| T\left\{\int d^{4} \times \mathcal{H}_{\text {eff }}^{\prime}(x) \mathcal{H}_{\mathrm{eff}}^{\prime}(0)\right\}+O_{0}(0)\left|K^{+}\right\rangle
\end{array}
$$

- Standard continuum treatment
- Replace bilocal term with (perturbative coefficient) x (local operator)
- Lattice treatment: Evaluate $H_{\text {eff }}(x) H_{\text {eff }}(0)$ product
- Revolve logarithmic divergence as $x \rightarrow 0$
- Deal with intermediate states with $E \leq M_{K}$
- Exploit methods from $M_{K_{L}}-M_{K_{S}}$ calculation

Exploratory Lattice Calculation (Xu Feng)

- $16^{3} \times 32$, RBC-UKQCD ensemble
- 2+1 flavor DWF, $1 / a=1.73 \mathrm{GeV}$
$-M_{\pi}=420 \mathrm{MeV}, M_{K}=540 \mathrm{MeV}$,
- $m_{c}(2 \mathrm{GeV})^{\mathrm{Ms}}=863 \mathrm{GeV}$
- Calculate all diagrams
- 800 configurations
- Phys.Rev.Lett. 118 (2017) 252001

Compare lattice and perturbative:

- Decay rate is short distance dominated:
$\mathrm{Br}=\kappa_{+}\left(1+\Delta_{\mathrm{EM}}\right)[\underbrace{\left(\frac{\operatorname{Im} \lambda_{t}}{\lambda^{4}} X\left(x_{t}\right)\right.}_{0.270 \times 1.481})^{2}+(\underbrace{\frac{\operatorname{Re} \lambda_{c}}{\lambda} P_{c}}_{-0.974 \times 0.365}+\underbrace{\frac{\operatorname{Re} \lambda_{t}}{\lambda^{5}} X\left(x_{t}\right)}_{-0.533 \times 1.481})^{2}]$
- Result for P_{c} :
- Perturbation theory [Buras, et al.,1503.02693]: $\quad P_{c}=0.365(12)$
- LD correction [Isidori, et al., hep-ph/0503107]: $\delta P_{c u}=0.04(2)$ (estimate of non-perturbative and ($\left.L_{\mathrm{QCD}} / m_{c}\right)^{2}$ effects)
- Exploratory lattice result:
- lattice evaluation of bilocal matrix element minus PT estimate)

$$
P_{c}(\mu \overline{\mathrm{MS}})-P^{\mathrm{PT}}(\mu \overline{\mathrm{MS}})=0.0040(\pm 13)_{\mathrm{stat}}(\pm 32)_{\mathrm{scale}}(-45)_{\mathrm{FV}}
$$

- small because of unexpected $4 x$ cancellation.

Outlook

- Lattice QCD is now capable of $1^{\text {stt-principles }}$ calculation of:
- $K \rightarrow \pi \pi, \Delta I=3 / 2$ and $1 / 2, \varepsilon^{\prime} / \varepsilon$.
- $M_{K L}-M_{K S}$ and long distance contribution to ε.
- Long distance parts of $K \rightarrow \pi \bar{T} I, K \rightarrow \pi \bar{\nu} v$.
- Physical quark mass calculations underway:
- $M_{K L}-M_{K S} \quad$ (Mira/ANL)
- $K^{+} \rightarrow \pi^{+} \bar{v} v$ (Mira/ANL), $K \rightarrow \pi T I$ (Tesseract/UK)
- Study feasibility of computing $K_{L} \rightarrow \mu^{+} \mu^{-}$: provides a new 10\% test for SM rare decay.
- New CORAL computer (Summit at ORNL) can perform $a^{2} \rightarrow 0$ limit with charm.

