Study of Long-distance Processes Using LQCD: from Flavor Physics to Nuclear Physics

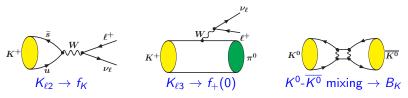
Xu Feng (冯旭)

High Performance Computing in High Energy Physics, CCNU, 09/20/2018

Congratulations to Heng-Tong and pepole at CCNU on the newly-built NSC³ center!

Role of lattice QCD in flavor physics

Lattice QCD is powerful for observables such as



Flavor Lattice Averaging Group reported f_K/f_π , $f_+(0)$ and B_K

	N_f	FLAG average	Frac. Err.
f_K/f_{π}	2 + 1 + 1	1.1933(29)	0.25%
$f_{+}(0)$	2 + 1 + 1	0.9706(27)	0.28%
\hat{B}_{K}	2 + 1	0.7625(97)	1.27%

lattice QCD calculations play important role in precision flavor physics

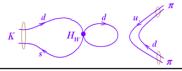
Lattice QCD and rare processes

Search for New Physics in the high-intensity frontiers [see Norman's talk]

$$g_{\mu} - 2 = 0.00116592089(63)$$

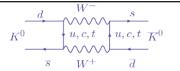
Direct CP violation
$$K \rightarrow \pi\pi$$

 $|\epsilon'| = 3.70(53) \times 10^{-6}$

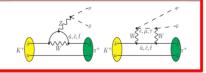


Indirect CP violation $K \rightarrow \pi\pi$ $\epsilon = 0.002228(11)$

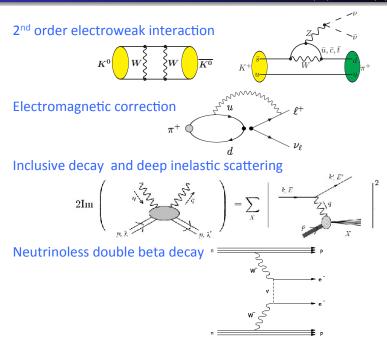
$$m_{K_L} - m_{K_S} = 3.2(1.0) \times 10^{-12} \text{ MeV}$$



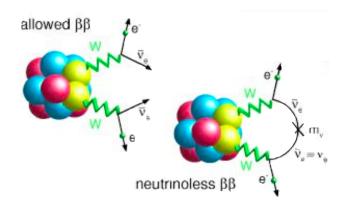
$$K^+ \to \pi^+ \nu \bar{\nu}$$
: BR=1.73^{+1.15}_{-1.05} × 10⁻¹⁰



LD processes and non-local matrix elements $\langle f|O_1|O_2|i\rangle$



From flavor physics to nuclear physics — use double β decay as an example



Neutrinos: Dirac or Majorana?

Start from Dirac fermion

Lagrangian density for a classical Dirac field

$$\mathcal{L}_{\text{Dirac}} = \bar{\psi} (i\gamma^0 \partial_t + i\vec{\gamma} \cdot \vec{\nabla} - m) \psi$$

• Using Weyl representation of γ , one can write ψ as

$$\psi = \begin{pmatrix} \phi \\ \chi \end{pmatrix}, \quad \psi_L = \begin{pmatrix} 0 \\ \chi \end{pmatrix}, \quad \psi_R = \begin{pmatrix} \phi \\ 0 \end{pmatrix}$$

Lagrangian becomes

$$\mathcal{L}_{\mathrm{Dirac}} = \chi^{\dagger} \underbrace{i(\partial_{t} - \vec{\sigma} \cdot \vec{\nabla})}_{O_{-}} \chi + \phi^{\dagger} \underbrace{i(\partial_{t} + \vec{\sigma} \cdot \vec{\nabla})}_{O_{+}} \phi - m \underbrace{(\chi^{\dagger} \phi + \phi^{\dagger} \chi)}_{\mathsf{Dirac \ mass}}$$

• Lorentz transform for the fermionic fields $\psi(x) \to \psi'(x) = \Lambda_{\frac{1}{2}} \psi(\Lambda^{-1}x)$

$$\Lambda_{rac{1}{2}} = \exp\left(-rac{i}{2}\omega_{\mu
u}S^{\mu
u}
ight), \quad \omega_{ij} = \epsilon_{ijk} heta_k, \quad \omega_{0i} = eta_i, \quad S^{\mu
u} = rac{i}{4}\left[\gamma^\mu,\gamma^
u
ight]$$

Under infinitesimal rotations $\vec{\theta}$ and boosts $\vec{\beta}$, χ and ϕ transform differently

$$\chi'(x) = (1 - i\vec{\theta} \cdot \frac{\vec{\sigma}}{2} + \vec{\beta} \cdot \frac{\vec{\sigma}}{2})\chi(\Lambda^{-1}x)$$
$$\phi'(x) = (1 - i\vec{\theta} \cdot \frac{\vec{\sigma}}{2} - \vec{\beta} \cdot \frac{\vec{\sigma}}{2})\phi(\Lambda^{-1}x)$$

Construct Majorana fermion

ullet Realizing that $ilde{\phi}=i\sigma_2\phi^*$ behaves like a left-handed spinor, one can define

Left hand:
$$\eta = \frac{\chi + \tilde{\phi}}{\sqrt{2}}$$
, Right hand: $\xi = -i\frac{\tilde{\chi} + \phi}{\sqrt{2}}$

• Define the charge-conjugate field

$$\psi = \begin{pmatrix} \phi \\ \chi \end{pmatrix}, \quad \psi^c = C \bar{\psi}^T = i \gamma^2 \psi^* = \begin{pmatrix} -\tilde{\chi} \\ \tilde{\phi} \end{pmatrix}$$

One can construct self-charge-conjugate (Majorana) field ${\it N}_1$ and ${\it N}_2$

$$N_1 = \frac{\psi + \psi^c}{\sqrt{2}}, \quad N_2 = -i\frac{\psi - \psi^c}{\sqrt{2}}$$

 \textit{N}_1 is purely related to η and \textit{N}_2 is related to ξ

$$N_1 = N_{1L} + N_{1L}^c = \begin{pmatrix} 0 \\ \eta \end{pmatrix} + \begin{pmatrix} -\tilde{\eta} \\ 0 \end{pmatrix}, \quad N_2 = N_{2L} + N_{2L}^c = \begin{pmatrix} 0 \\ \tilde{\xi} \end{pmatrix} + \begin{pmatrix} \xi \\ 0 \end{pmatrix} = (N_{2R})$$

Lagrangian density for Dirac field can also be expressed as

$$\begin{split} \mathcal{L}_{\mathrm{Dirac}} &= \mathcal{L}_{\mathrm{Majorana}}(\textit{N}_{1}) + \mathcal{L}_{\mathrm{Majorana}}(\textit{N}_{2}) \\ \mathcal{L}_{\mathrm{Majorana}}(\textit{N}_{1}) &= \frac{1}{2} \overline{\textit{N}}_{1} (i \gamma^{\mu} \partial_{\mu} - \textit{m}) \textit{N}_{1} \\ &= \overline{\textit{N}}_{1L} (i \gamma^{\mu} \partial_{\mu}) \textit{N}_{1L} - \frac{1}{2} \textit{m} \left(\overline{\textit{N}}_{1L}(\textit{N}_{1L})^{c} + \text{h.c.} \right) \\ &= \underbrace{\eta^{\dagger} \textit{O}_{-} \eta}_{\text{Left handed}} - \frac{1}{2} \textit{m} \underbrace{\left(\eta^{\dagger} (-\tilde{\eta}) + \text{h.c.} \right)}_{\text{Majorana mass}} \end{split}$$

- Dirac fermion consists of a pair of mass degenerate Majorana fermion
- Majorana fermion also satisfies Dirac equation
- Under global phase transformation

Dirac:
$$\chi \to e^{i\alpha}\chi$$
, $\phi \to e^{i\alpha}\phi$ \Rightarrow lepton number conservation Majorana: $\eta \to e^{i\alpha}\eta$, $\tilde{\eta} \to e^{-i\alpha}\tilde{\eta}$ \Rightarrow lepton number violation

- ▶ Electric charge conservation forces charged fermion to be Dirac type
- Neutrino can be Dirac, Majorana or the mixed type

Light-neutrino exchange and $0\nu2\beta$ decay

Light-neutrino exchange in $0\nu2\beta$ decay

Minimal extension of SM – exchange of three light Majorana neutrinos

• Effective Lagrangian for β decay

$$\mathcal{L}_{\text{eff}} = 2\sqrt{2}G_F V_{ud}(\overline{u}_L \gamma_\mu d_L)(\overline{e}_L \gamma_\mu \nu_{eL})$$

• Effective Hamlitonian for 2β decay

$$\mathcal{H}_{ ext{eff}}^{2eta} = rac{1}{2!} \int d^4x \, \mathcal{L}_{ ext{eff}}(x) \mathcal{L}_{ ext{eff}}(0)$$

Neutrino flavor eigenstate mixes with three mass eigenstates

$$\overline{e}_L \gamma_\mu \nu_{eL} \quad o \quad \sum_{\nu} \overline{e}_L \gamma_\mu U_{ek} \nu_{kL}$$

 U_{ek} is the mixing matrix element.

These neutrinos are very light

Long-distance contribution dominated

Light-neutrino exchange in $0\nu2\beta$ decay

Assume that $0\nu2\beta$ is mediated by exchange of light Majorana neutrinos

$$\begin{split} & \sum_{k} \overline{e}_{L}(x)\gamma_{\mu} U_{ek} \nu_{kL}(x) \overline{e}_{L}(0) \gamma_{\nu} U_{ek} \nu_{kL}(0) \\ & = -\sum_{k} \overline{e}_{L}(x)\gamma_{\mu} U_{ek} \nu_{kL}(x) \overline{\nu_{k}^{c}}_{L}(0) \gamma_{\nu} U_{ek} e_{L}^{c}(0) \\ & = -\sum_{k} \overline{e}_{L}(x)\gamma_{\mu} U_{ek} P_{L} \left(\int \frac{d^{4}q}{(2\pi)^{4}} \frac{-i\not q + m_{k}}{q^{2} + m_{k}^{2}} e^{iqx} \right) P_{L} \gamma_{\nu} U_{ek} e_{L}^{c}(0) \\ & \approx -m_{\beta\beta} \int \frac{d^{4}q}{(2\pi)^{4}} \frac{e^{iqx}}{q^{2}} \overline{e}_{L}(x) \gamma_{\mu} \gamma_{\nu} e_{L}^{c}(0) \end{split}$$

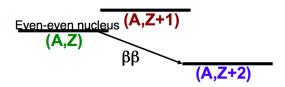
In the last step, q vanishes and m_k enters into the effective mass $m_{\beta\beta}$

$$m_{\beta\beta} = \sum_{k} m_k U_{ek}^2$$

 $0\nu2\beta$ decay amplitude is proportional to the absolute neutrino mass

Double beta decay

Double beta decay exists in nature



$2\nu\beta\beta$ decay is the rarest SM process that has been measured

- ullet Small mass difference ΔM between initial and final state \Rightarrow suppressed by phase space
- ullet 2nd-order EW interaction \Rightarrow suppressed by ${\Delta M^2\over M_W^2}$

$2\nu\beta\beta$ has been detected in total of 10 nuclei: ${}^{48}\mathrm{Ca}, {}^{76}\mathrm{Ge}, \cdots {}^{238}\mathrm{U}$

• For all decays, half-life time: $10^{18} - 10^{21}$ yr (Age of universe: 1.38×10^{10} yr)

Neutrinoless double beta decay

$0 u\beta\beta$ decay

- ullet The easiest way to determine whehter u is a Majorana fermion
- ullet Give the information on the absolute mass scale of u
- Provide the evidence of lepton number violation

It can be measured by using tons of materials such as TeO₂

_	in be measured by using tons of materials such as reog				
	CANDLES	Ca-48	60 CaF ₂ crystals in liq.	6 kg	Construction
			scint		
_	CARVEL	Ca-48	48CaWO4 crystal scint. 100 kg		
Ī	COBRA	Cd-116,	CdZnTe detectors	10 kg	R&D
		Te-130			
	CUROICINO	Te-130	TeO ₂ Bolometer	ll kg	Operating
Ī	CUORE	Te-130	TeO ₂ Bolometer	206 kg	Construction
	DCBA	Nd-150	Nd foils & tracking	20 kg	R&D
			chambers		
	EXO200	Xe-136	Xe TPC	200 kg	Construction
Ī	EXO	Xe-136	Xe TPC	1-10t	R&D
_	GEM	Ge-76	Ge diodes in LN	l t	
ĺ	GERDA	Ge-76	Seg. and UnSeg. Ge in	35-40 kg	Construction

- ullet 4 Exp. (Majorana, EXO, CUORE, GERDA) reached $T_{1/2}^{0
 u}>10^{25}$ year
- ullet 1 Exp. (KamLAND-Zen) exceeded the level of $1 imes 10^{26}$ year

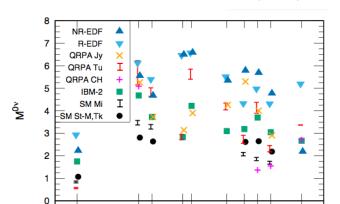
Double β decay: generic difficulties

At present, lattice QCD mainly targets on light nuclei

– because of two exponential difficulties

- For nucleus A: $\frac{\text{signal}}{\text{noise}} \sim \exp\left[-A(M_N 3/2m_\pi)t\right] \Rightarrow \text{a sign problem!}$
- Complexity: number of Wick contractions = $N_u!N_d!N_s!$
 - e.g. ${}^{4}{\rm He} \Rightarrow {\rm naively} \ 5 \times 10^{5} \ {\rm contractions!}$

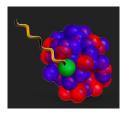
For nuclear matrix element, various models yield O(100%) discrepancies



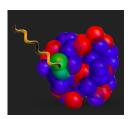
Single β decay of nuclei

Coupling of currents to nuclei in nuclear EFT [Detmold, talk at Lat18]

One body coupling dominates



• Two nucleon contributions are subleading but non-negligible



A promising way to provide few-body inputs to ab initio many-body calculations

Double β decay of nuclei

Begin with the effective Lagrangian $\mathcal{L}_{\mathrm{eff}}$ for the single eta decay

$$\mathcal{L}_{\mathrm{eff}} = 2\sqrt{2} \textit{G}_{\textit{F}} \textit{V}_{\textit{ud}} (\bar{\textit{u}}_{\textit{L}} \gamma_{\mu} \textit{d}_{\textit{L}}) (\bar{\textit{e}}_{\textit{L}} \gamma_{\mu} \nu_{\textit{eL}})$$

Contributions are identified into three regions in EFT

• Hard region: $\Lambda \gg 1 \text{ GeV}$

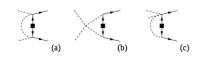
$$\int d^4x \, e^{i\Lambda x} \mathcal{L}_{\text{eff}}(x) \mathcal{L}_{\text{eff}}(0) \sim 8G_F^2 V_{ud}^2 \frac{m_{\beta\beta}}{\Lambda^2} (\bar{u}_L \gamma_\mu d_L) (\bar{u}_L \gamma_\mu d_L) \bar{e}_L e_L^c.$$

In lattice QCD, a hard cutoff is introduced by $1/a \Rightarrow O(a^2)$ effects

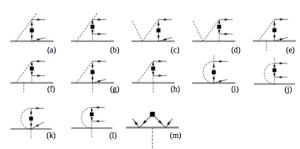
- Soft region: O(100 MeV) O(1 GeV)
 - ► Few-body decay dominates
 - Nuclear potential mediated by pions: $\pi\pi \to ee$, $\pi n \to pee$, $nn \to ppee$, \cdots
- Ultrasoft or radiative region: $\Lambda \ll 100 \text{ MeV}$
 - Neutrinos feel the complete nucleus instead of just the nucleons

Loop diagrams in EFT

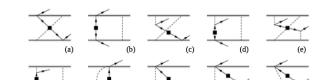
• $\pi\pi \rightarrow ee$



• $\pi n \rightarrow pee$



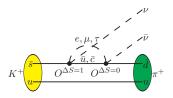
ullet nn o ppee

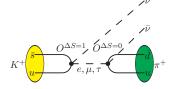


A comparison between rare Kaon decay and $0\nu\beta\beta$

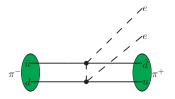
Rare kaon decay:

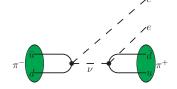
N. Christ et. al PRD93 (2016), 114517Z. Bai et. al, PRL118 (2017), 252001Z. Bai et. al, 1806.11520, to be published





Double beta decay:

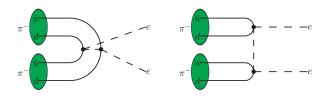




Our setup

$\pi\pi o ee$

- Two pions stay at rest
- Two electrons carry spatial momentum $\vec{p}_1 = -\vec{p}_2$, $\vec{p}_{1,2} = E_{\pi\pi}/2$



- Decay goes through $\pi\pi \to e_1 \bar{\nu} n \to e_1 e_2$ or $\pi\pi \to e_2 \bar{\nu} n \to e_1 e_2$
- Decay amplitude is simplified as

$$\mathcal{A} = -T_{\text{lept}} \sum_{n} \int \frac{d^{3} \vec{p}_{n}}{(2\pi)^{3}} \sum_{i=1,2} \frac{\langle 0|J_{\mu L}|n\rangle \langle n|J_{\mu L}|\pi\pi\rangle}{2E_{\nu,i}E_{n}(E_{n} + E_{\nu,i} + E_{i} - E_{\pi\pi})}$$

with
$$T_{\mathrm{lept}} = 4 G_F^2 V_{ud}^2 m_{\beta\beta} \bar{u}_L(p_1) u_L^c(p_2)$$
.

Implementation of neutrino propagator

Scalar propagator $S_0(x,y)e^{-i\vec{k}\cdot(\vec{x}-\vec{y})}$ with $\vec{k}=\vec{p}_{1,2}$ can be implemented

$$S_{0}(x,y)e^{-i\vec{k}\cdot(\vec{x}-\vec{y})} = \int \frac{d^{4}q}{(2\pi)^{4}} \frac{e^{iq(x-y)}}{q_{t}^{2} + (\vec{q}+\vec{k})^{2}}$$

$$\Rightarrow \frac{1}{VT} \sum_{\vec{q},q_{t}} \frac{e^{iq(x-y)}}{\widehat{q_{t}}^{2} + \sum_{i} \widehat{q_{i}+k_{i}}^{2}}$$

• $\hat{q}_i = 2\sin(q_i/2)$ are the lattice discretized momenta

Zero mode $(\vec{q} = 0)$ of the propagator is computed exactly

$$\frac{1}{VT} \sum_{q_t} \frac{e^{iq_t(t_x - t_y)}}{\widehat{q_t}^2 + \sum_i \widehat{k_i}^2}$$

Non-zero modes $(\vec{q} \neq \vec{0})$ of the propagator can be constructed as

$$\frac{1}{N_r} \sum_{r=1}^{N_r} \phi_r(x) \phi_r^*(y), \quad \phi_r(x) = \frac{1}{\sqrt{VT}} \sum_{\vec{q} \neq \vec{0}, q, \sqrt{\widehat{g}_t}^2 + \sum_{r} \widehat{g_r + k_r}^2} \frac{\xi_r(q) e^{iqx}}{\sqrt{\widehat{g}_t}^2 + \sum_{r} \widehat{g_r + k_r}^2}.$$

Here the stochastic sources $\xi_r(q)$ satisfy

$$\lim_{N_r \to \infty} \frac{1}{N_r} \sum \xi_r(q) \xi_r^*(q') = \delta_{q,q'}.$$

Gauge configuration ensembles

m_{π} [MeV]	a^{-1} [GeV]	$L^3 \times T$	$N_{\rm conf}$	N_r
420	1.73	$16^{3} \times 32$	200	32
140	1.01	$24^3 \times 64$	60	64

ullet Generate Coulomb-gauge-fixed wall-source propagators at all T time slices

ullet At $m_\pi=140$ MeV, use all mode average to reduce the computational cost

ullet Average the temporal PBC and APBC condtion to make T o 2T

Correlation function

Construct the correlation function

$$\mathcal{C}(t_x,t_y,t_{\pi\pi}) = rac{1}{2!} \langle e_1 e_2 | \mathcal{L}_{ ext{eff}}(t_x) \, \mathcal{L}_{ ext{eff}}(t_y) \, \phi_{\pi\pi}(t_{\pi\pi}) | 0
angle$$

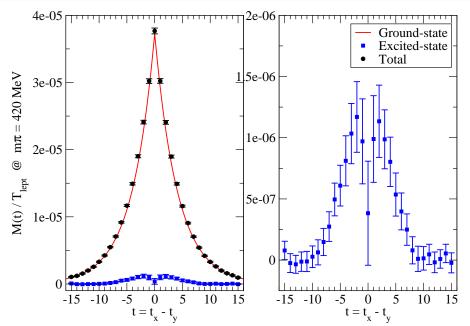
Define the unintegrated amplitude $\mathcal{M}(t)$ with $t = t_x - t_y$:

$$\mathcal{M}(t) = C(t_x, t_y, t_{\pi\pi}) / \left(V \frac{N_{\pi\pi}}{2E_{\pi\pi}} e^{E_{\pi\pi}t_{\pi\pi}}\right)$$

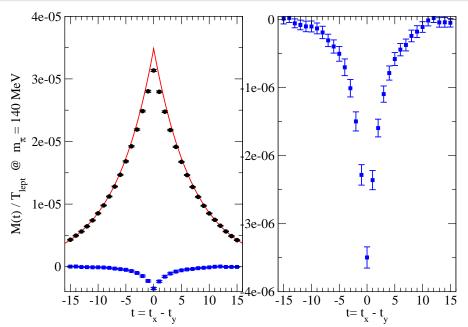
At large |t|, $\mathcal{M}(t)$ is saturated by ground intermediate state - $ear{
u}\pi$

$$\mathcal{M}(t) \xrightarrow{|t| \gg 0} -T_{\mathrm{lept}} \frac{1}{V} \frac{2\langle 0|J_{\mu L}|\pi\rangle_{\mathrm{V}}\langle \pi|J_{\mu L}|\pi\pi\rangle_{\mathrm{V}}}{(2m_{\pi})(2\mathcal{E}_{\nu})} e^{-m_{\pi}|t|}$$

$\pi\pi ightarrow ee$ decay amplitude @ $m_\pi =$ 420 MeV



$\pi\pi ightarrow ee$ decay amplitude 0 $m_\pi=140$ MeV



N. Christ et. al, PRD88 (2013) 014508

Integrate both t_{x} and t_{y} over a fixed window $[t_{a},t_{b}]$ with $t_{a}\gg t_{\pi\pi}$

$$\mathcal{M} = \sum_{t_{x}=t_{a}}^{t_{b}} \sum_{t_{y}=t_{a}}^{t_{b}} C(t_{x}, t_{y}, t_{\pi\pi}) / \left(V \frac{N_{\pi\pi}}{2E_{\pi\pi}} e^{E_{\pi\pi}t_{\pi\pi}} \right)$$

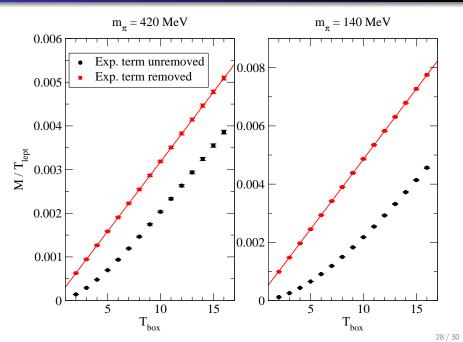
$$= -T_{lept} \sum_{n} \frac{1}{V} \sum_{\vec{p}_{n}} \sum_{i=1,2} \frac{\langle 0|J_{\mu L}|n\rangle \langle n|J_{\mu L}|\pi\pi\rangle}{2E_{n}E_{\nu,i}(E_{n} + E_{\nu,i} + E_{i} - E_{\pi\pi})}$$

$$\times \left(T_{box} + \frac{e^{-(E_{n} + E_{\nu,i} + E_{i} - E_{\pi\pi})T_{box}} - 1}{E_{n} + E_{\nu,i} + E_{i} - E_{\pi\pi}} \right)$$

with $T_{\mathrm{box}} = t_b - t_a + 1$ the time extent of the integration window

- $T_{
 m box}$ is sufficiently large \Rightarrow exp. term vanishes as $E_n + E_{
 u,i} + E_i > E_{\pi\pi}$
- ullet The coefficient of the term proportional to $T_{
 m box}$ provides ${\cal A}(\pi\pi o ee)$

Integrated matrix element



m_{π} [MeV]	$t_a-t_{\pi\pi}$	$\mathcal{A}^{(g)}$	$\mathcal{A}^{(e)}$	$\mathcal{A}^{(g)}+\mathcal{A}^{(e)}$
	6		0.055(13)	1.517(13)
420	7	1.462(10)	0.060(13)	1.522(13)
	8	, ,	0.052(14)	1.514(14)
	6		-0.0664(70)	1.8199(63)
140	7	1.8863(50)	-0.0660(73)	1.8203(62)
	8	. ,	-0.0665(70)	1.8199(60)

We obtain the result with sub-percent statisitcal errors:

$$\begin{split} \frac{\mathcal{A}(\pi\pi \to ee)}{F_{\pi}^2 T_{\rm lept}} \bigg|_{m_{\pi}=420~{\rm MeV}} &= 1.517(13), \\ \frac{\mathcal{A}(\pi\pi \to ee)}{F_{\pi}^2 T_{\rm lept}} \bigg|_{m_{\pi}=140~{\rm MeV}} &= 1.820(6). \end{split}$$

At $m_\pi=$ 420 and 140 MeV, $\mathcal{A}(\pi\pi\to ee)$ are 24% and 9% smaller than the leading-order ChPT predication

$$\frac{\mathcal{A}^{\mathrm{LO}}(\pi\pi\to e\mathrm{e})}{\mathit{F}_{\pi}^{2}\,\mathit{T}_{\mathrm{lept}}}=2$$

Outlook

Today, LQCD is entering Exaflop generation

- Standard quantity: expect the precision significantly enhanced
- Non-standard quantity, such as LD processes: worthwhile for study

For flavor physics:

- lattice QCD provides useful low-energy QCD information
- plays important role in high-precision frontier

The techniques developed in flavor physics can be used in nuclear physics

- help to study the rare processes related to nuclear matter
- Can one day, nuclear physics become a new flavor physics?

Backup slides

Three types of power-law finite-volume effects

- Generic FV effects associated to long-distance processes $i \rightarrow n \rightarrow f$ N. Christ et. al, PRD91 (2015), 114510
 - ▶ *n* is the multi-particle intermediate state
 - ▶ Energy of *n* is smaller than initial-state energy
- FV effects caused by $\pi\pi$ -rescattering in the initial state

$$|\pi\pi\rangle_{\infty} = \left(2\pi \frac{E_{\pi\pi}}{k^3}\right)^{\frac{1}{2}} \left(q\frac{d\phi}{dq} + k\frac{d\delta}{dk}\right)^{\frac{1}{2}} |\pi\pi\rangle_{V}$$

At threshold

$$\frac{2\pi}{k^3} \left(q \frac{d\phi}{dq} + k \frac{d\delta}{dk} \right) = V \left[1 + d_1 \frac{a_{\pi\pi}}{L} + d_2 \left(\frac{a_{\pi\pi}}{L} \right)^2 + d_3 \left(\frac{a_{\pi\pi}}{L} \right)^3 - 2\pi \frac{a_{\pi\pi}^2 r_{\pi\pi}}{L^3} + O(L^{-4})^3 \right] + O(L^{-4})^3 + O(L^{-4})$$

- FV effects due to the long-range property of neutrino propagator
 - e.g FV effects relevant for the $e\bar{\nu}\pi$ -intermediate state

Three types of power-law finite-volume effects

• FV effects relevant for the $e\bar{\nu}\pi$ -intermediate state

$$\Delta_{\mathrm{FV}} = \left(\frac{1}{V} \sum_{\vec{p}} - \int \frac{d^3 \vec{p}}{(2\pi)^3}\right) \frac{\langle 0 | J_{\mu L} | \pi(\vec{p}) \rangle \langle \pi(\vec{p}) | J_{\mu L} | \pi \pi \rangle}{E_{\nu} E_{\pi} (E_{\pi} + E_{\nu} + E_{e} - E_{\pi \pi})}$$

- Integrand is singular at $E_{
 u} = |\vec{p}_{
 u}| = |\vec{p} + \vec{p}_{e}|$
- ▶ Define the regular part $f(\vec{p}) \equiv \frac{\langle 0|J_{\mu L}|\pi(\vec{p})\rangle\langle\pi(\vec{p})|J_{\mu L}|\pi\pi\rangle}{E_{\pi}(E_{\pi}+E_{\nu}+E_{e}-E_{\pi\pi})}$ and write

$$f(\vec{p}) = f(-\vec{p}_e) + [f(\vec{p}) - f(-\vec{p}_e)]$$

▶ Finally we have

$$\Delta_{\mathrm{FV}} = f(-ec{
ho}_{\mathrm{e}}) \left(rac{1}{V} \sum_{ec{
ho}} - \int rac{d^3ec{
ho}}{(2\pi)^3}
ight) rac{1}{|ec{
ho} + ec{
ho}_{\mathrm{e}}|}$$