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QCD is all about scale!

Sept. 2013
T decays (N3LO)
Lattice QCD (NNLO)
DIS jets (NLO)
Heavy Quarkonia (NLO)
e'e jets & shapes (res. NNLO)
/ p()le fit (N3LO)
pp —> jets (NLO)

QCD OcS(MZ) = 0.1185 +0.0006
100

Q [GeV]

Heavy-ion collisions span the entire curve above
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A near established paradigm, on the soft side
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Well established results pr<2GeV

Excellent theoretical predictive power over “soft” spectrum
both centrality and pr dependence
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Now we want to look at jets in this medium
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High energy and high virtuality
part of shower

* Radiation dominated regimy
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» Radiation dominated regime
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Theory: Higher Twist (X. Guo X.-N. Wang)
MC: MATTER, YaJEM, Qin F P approach 7



Low virtuality, high energy part

Scattering dominated regime

Few, time separated emissions /
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Low virtuality, high energy part

Scattering dominated regime
Few, time separated emissions

QZ: q T _—
T: lifetime of a parton

a‘(“*******i Theory: BDMPS, AMY

MC: MARTINI, JEWEL,LBT
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Low virtuality low energy part

* Many of these partons are absorbed by the medium

* Cannot be described by pQCD
 Modeled! (LBNL-CCNU, YaJEM, JEWEL)

* Scale of parton same as scale of medium

 AdS/CFT

P. Chesler, W. Horowitz J. Casalderrey-Solana,
G. Milhano, D. Pablos, K. Rajagopal
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Grand picture (leading hadrons)
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Grand picture (leading hadrons)

Strong coupling, -
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Energy deposition-thermalization

Strong coupling, Energy thermalization
AdS-CFT

—--l

Soft wide angle radiation

m =
——

Strong coupling,
AdS-CFT Energy thermalization
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Everything changes with scale in jet quenching
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Everything changes with scale in jet quenching

Strong coupling, Energy thermalization
AdS-CFT
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Soft wide angle = = s\~~~ =~ oues

radiation D e e
Strong coupling,

AdS-CFT Energy thermalization

y
L
..--

12



Transport coefficients partons
in a dense medium

p; ~ E* —p pt ~pi/2p”

<pi > . Transverse momentu

L diffusion rate

Elastic energy

. (AE)r loss rate
€= I also diffusion
rate e;

By definition, describe how the medium modifies the jet parton!
13



In general, 2 kinds of transport coefficients

Type 1: which quantify how the medium changes the jet

Q(E, QQ) cj4(E,Q2) _ <P%> — <p52r>2

(6E7)

(6E*) — (0E?)?

((E,Q%)  &(B,Q%) = 7

é4(E7 Qz) —

Type 2: which quantity the space-time structure of the
deposited energy momentum at the hydro scale

STH —>
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Type 1: which quantify how the medium changes the jet

i(E, Q%) i (E. Q%) = (1) = (P7)°

(6E7)
L

(6E*) — (0E?)?
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In general, 2 kinds of transport coefficients

Type 1: which quantify how the medium changes the jet

Type 2: which quantity the space-time structure of the
deposited energy momentum at the hydro scale




Observables: more type 2, more MC
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What is the goal of this enterprise?

® We focus on about 5 jet coefficients, and 15 soft coefficients

® All of them are non-perturbative

® Determine these unambiguously from detailed phenomenology
® Have an extendable phenomenological framework

® Calculate them (if possible) from first principles

® Deeper understanding of the structure of the QGP.

16



Need a Monte-Carlo event generator based approach

Need to have a framework

* That can modularly incorporate a variety of
theoretical approaches

* Which can allow you to model medium response,
and entire range of transport coefficients

* Can address all observables simultaneously
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eed a Monte-Carlo event generator based approach

Need to have a framework

Everything changes with scale in jet quenching

Strong coupling, Energy thermalization

AdS-CFT / Yeu=
- 3 BDMPS-AMY

* That can modularly incorporate a variety of —

Soft wide anglc. = “\N

radiation Seaa

~e

theoretical approaches

14

In general, 2 kinds of transport coefficients
Type I:which quantify how the medium changes the jet

i(B, Q%) a@ Q) = PR _0h”

* Which can allow you to model medium response, o we s

Type 2: which quantify the space-time structure of the
deposited energy momentum at the hydro scale

and entire range of transport coefficients ]l

Observables: more type 2, more MC

1. Observables that only depend on type 1
1. Strong dependence on hard o :
1. Hadron R, high pr va!

equire fragmentation functions)

* Can address all observables simultaneously R

1. Strong dependence on hard o :
1. JetRaa, high prva!
2. Difets (X)), y-Jet
(reduce dependence on type 2 by increasing E, lose sensitivity, reduce R, requires resummation)
2. Weaker dependence on hard o :
1z
2. Jet Mass, Jet shape
3. Observables that depend strongly on type 2
Jet medium correlations

(clear dependence on g, but als
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Need a Monte-Carlo event generator based approach

Need to have a framework

Everything changes with scale in jet quenching

Strong coupling, Energy thermalization
AdS-CFT

...................... 3 EDMPS-AMY

* That can modularly incorporate a variety of e

~ao
~

~e

theoretical approaches [

In general, 2 kinds of transport coefficients

Type I:which quantify how the medium changes the jet

i2.Q%) a(m,Qr = PRl

* Which can allow you to model medium response, o we s

Type 2: which quantify the space-time structure of the
deposited energy momentum at the hydro scale

and entire range of transport coefficients =l A

Observables: more type 2, more MC

1. Observables that only depend on type 1
1. Strong dependence on hard o':
1. Ha

* Can address all observables simultaneously

Such a framework now exists: JETSCAPE
https://github. [JETSCAPE
oot ; JETSEAPE




What is JETSCAPE?

Jet Energy-loss Tomography with a Statistically and Computationally
Advanced Program Envelope.

W.‘(_(
o »

10 Institutions, $4 M, 4 year NSF project

UC

Berkeley
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How would this work: TETSLRRE

Modify, input parameters e.g., a, e.

Initial hard

Detector
simulation

Nuclear Parton
Distribution

Statistical

Phenomenological input: fit test

Hard & semi-hard
hadronization

Transport coefficients
Energy deposition /

c
(]
B
i
>
£
()}
©
(8]
B
V)
B
©
o)
v

Nuclear Monte-
Carlo
Initial soft
density distribution
Corrected
data

Success!

2 streams: one CPU stream and one GPU stream
Ideal for hybri%l9 architecture.



How would this work: TETSLRRE

Modify, input parameters e.g., G, e.

Initial hard
N-parton

distribution
—

Detector
simulation

Distribution
Function

Nuclear Parton

Phenomenological input:
Transport coefficients
Energy deposition

hadronization

T

\ | 1
LI R B
1 v 1V

Viscous Fluid dynamics of QGP

Initial soft

density distribution
Statistical emulation

Nuclear Monte-
Carlo

2 streams: one CPU stream and one GPU stream
Ideal for hybri%l9 architecture.



How would this work? M

JEVSLAPE

Modify, input parameters e.g., a, e.

Initial hard
N-parton

distribution
I

Nuclear Parton
Distribution
Function

Lattice QCD A
Input

Phenomenological input:
Transport coefficients
Energy deposition

hadronization

Hard & semi-hard

P
-

Nuclear Monte
Carlo
Initial soft
density distribution
<
a
(@)
[ -
(7]
i
c
o
Q.
<
=2
Q)
3,
H:
(@)
*
o)
(o
)
I
Q)
Q.
o
E.
(@]
(@]
Q)
a
Q)
Q.
()

2 streams: one CPU stream and one GPU stream

Ideal for hybri%l9 architecture.



Calibrating/tuning the generator

Need a Bayesian analysis to determine best value of 20 parameters
Each require 25 values that have to be sampled
Thus Number of sample points = 500.

We need 500 X 3 energies X 5 Centralities X 400 events = 3,000,000
events

1 JETSCAPE event takes 1hr on default node { 8 core + 1P100 GPU}

After we do all of this, the parameters will be determined ...

20



In all calculations presented
bulk medium described by viscous fluid dynamics

m \\‘
o’.&'o'u‘\‘ AR

Medium evolves hydro-dynamically as the jet moves through it i
Fit the G for the initial T in the hydro in central coll. .

I ' I ' I ' I ' I
[ ——2+1D-visc. Hydro,§ = 2.2 GeV’/fm, T _ fixed
= PHENIX (20-30%)

l
|
- — - 24+1D-visc. Hydro, 61\ =2.2 GeV /fm ?;ma calculated
e PHENIX (0-5%) .




From RHIC to LHC, refit hydro

-wllwllwllwllwl . ﬁ_—__ﬁ
: iji —_— CmaXfIXEd

— = T, Calculated, q unadjusted
@ CMS 10-30%

S calculated,a adjusted
® CMS 0-5%

O s 0 4

R (fm)

d should scale with an intrinsic quantity in the hydro




Necessity of Multi-scale models

Its the right thing to do.
Pushing limited approaches past limits creates tension!

Barwes Sl LBT anti-k, R = 0.4 jets —LBT 5.02 TeV+ATLAS 5.02 TeV

fixed as=0.15 : —LBT 2.76 TeV+ATLAS 2.76 TeV

—— ——
O CMS O— O CMS 30—50
O ALICE 0-5% O ALICE 40-50%

mean as=0.2

100 200 300 400 500 600 700 800 900 1000

25 50 75 100
Pr (GeV)

S. Cao, MATTER

100 < P:JF'et < 300 GeV K?lQO —
Pj’]zanrton > 1 GGV %238
0.3 <n<2,r<03 CMnggF‘H
0-10% Centrality

MATTER jet R=0.3

ATLAS hadron
CMS jet R=0.3

MATTER pion

Pb-Pb @ 2.76 TeV 0-5%




Evidence of multiple scales from M

JEIILAPE
multiple-stage Monte Carlos

L
= = = = VAaCuum

- = = MATTER

dE / d6 (GeV)

2
1 |- A%
0

S
O
C
)
S
S~
o
S

0 0.1 0.2 0.3 0.4
dynamical Q,

Switching between one event-generator and the next
in a brick @ ETSCAPE Phys.Rev. C96 (2017) no.2, 024909
Repeat with hadronization and fluid medium being calculated



= = = = Vacuum
= == = MATTER

Q,=1GeV

JIN N

JETILAPE




Using the tull event generator A\l

JEVILAPE

* Any good event generator needs a good p-p baseline

| ' | anti-kT with R=0.2, Ini<2.0 |

PYTHIA for initial state s
MATTER for all final state partons > 1GeV

\/g = 2.76 ATeV, Jets anti-k; R=0.4 ' JETSCAPE Preliminary

T T T 4 T T T T
ATLAS Data —e— | . | . | ' |
‘Colorless Had + = - 126 < pr < 158 GeV 100 150 200 250
JETSCAPE Preliminary JETSCAPE Preliminary pT of Jet (GeV)

O = N W

=a " 100 < pr < 126 GeV

"
° e

0.3 04 05 06 07 08 09 1 0.3 04 05 06 07 08 09 - +JETSCAPE(pp)/CMS(pp)at2.76TeV
X J X J

1/NdN/d£L’J
S = N W

= e I ™ 71 anti-kT with R=0.4, yji<2.0 [

—

I T T I T I

- 158 < pr < 200 GeV

JETSCAPE Preliminary

T I I

_ pr > 200 GeV i
JETSCAPE Preliminary +} + * * *

O =N W

¥ . .IE"IIS‘( ‘.»ll’E 1’rc11'mfnarj‘
03 04 05 06 0.7 08 0.9 1 03 04 0.5 06 0.7 0.8 0.9 o
LJ LJ 100 150 200 250

pT of Jet (GeV)

1/NdN/d£CJ
N N W




Preliminary results from JETSCAPE M
JETSCAPE

Initial state with TRENTO for both hydro and jets
TRENTO —> PreEquib—> MUSIC —> Soft Hadronization
TRENTO —>PYTHIA init

—> (MATTER/LBT/MARTINI/AAS) + MUSIC profile

—> PYTHIA based hadronization

(112)_ . _
A JETSCAPE (PbPb 0-5%)/(pp) R,,ats =276TeV MATTER + LBT with 0,;=0.25

—+- CMS 2.76 TeV (0-5%) ® CMS (0-5%)
m JETSCAPE

JETSCAPE Preliminary

2274 AL '

100 150 200 250
Jet P, (GeV)




Consistent with Results from the JET collaboration

ollaboration

w-u-u MARTINI o McGill-AMY K. Burke €'|' Cll.
- == GLV-CUJET

5 Au+Au at RHIC |
5 Pb+Pb at LHC |
0.2 0.3 0.4
T (GeV)

Did separate fits to the RHIC and LHC data for maximal q

without assuming any kink in the q vs T3 curve
27



Consistent with Results from the JET collaboration

ollaboration

»e-« MARTI ERvveTpevea <. Burke et al.

== HT-BW @« - == GLV-CUJET

)
A

N
e

Au+Au at RHIC

Pb+Ph at I‘HC'

Did separate fits to the RHIC and LHC data for maximal q

without assuming any kink in the q vs T3 curve
27



Back to the question of how the
medium effects the parton.

A parton in a jet shower, has momentum components

q=(q,9%9r) = (1,A2,A)Q, Q: Hard scale, A <<1, AQ >> Aqcp

- - O - > l
- O O - -
= - - - - I

hence, gluons have
ki ~AQ, kT ~XQ
could also have £~ ~ AQ

28



Assuming the medium has a large length.

Or, the parton has a long life time, 1/(A2Q)

Multiple independent scattering dominates over
multiple correlated scattering

Resumming gives a diffusion equation for the prdistribution




Assuming the medium has a large length.

Or, the parton has a long life time, 1/(A2Q)

Multiple independent scattering dominates over
multiple correlated scattering

Resumming gives a diffusion equation for the prdistribution

t

A af(gbﬂ =Vp, - D-Vp, f(p1,1)

(p7) = 4Dt

~ P 27T2OéSCR/ <
— L — dt ( X
1T T N2

Tr {UT (t, vt; 0)t*F*H v, U(t, vt; O)tbeZ(O)Va}

X)

29






Q is the hard scale of the jet ~ E
QA is a semi-hard scale ~ (ET)12, A\ — ()

q contains all dynamics below QA



Q is the hard scale of the jet ~ E
QA is a semi-hard scale ~ (ET)12, A\ — ()

q contains all dynamics below QA



A first principles method to calculate ¢

W(k) = ——(¢ ;M| / d*zd*y(y) Aly)v(y)

X |¢” +ki;X)(q

in terms of W, we get

31
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Final state is on-shell”’

la+ 0% = 5= (k7 = L),

Also we are calculating in a finite temperature heat bath

Y e dy~d*y | LAY
A~ S d2k 12 —'Y ik -yl
1= 7N, (2m)3 © EC
] S F Ly FF(0)n)

physical §(q q") where g7 ~ N,

32



Consider a more general object

A Al [ d*yd*k

Q = ik 2007 (MIETH(O) L (y)[M)
Ne (27’(’)4 \/iq— (C] k)Z ic '

Consider ( _large (~Q) and fixed

Consider q"To be a variable

d(,
% has apoleat ¢ =

k1
29—

O

Q has a branch cut on the real axis
atat~A20

g =Im(Q) g ‘complex plain

33
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Consider the following integral

dg™ Q(q™) |
[ = Tcomplex plain

!

A

(D
&/

Qo

For Qo ~ -Q, can Taylor expand é in terms of local operators

0O D_D2\"
Aartas(M|F]* 2_:0( q2q?Q?L> Fj,u« M

1=
: NCQQO 34
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Consider the following integral

dg™ Q(q™) |
[ = Tcomplex plain

0) —_—
\

Qo

| |

For Qo ~ -Q, can Taylor expand é in terms of local operators

0O D_D2\"
Aartas(M|F]* 2_:0( q2q?Q?L> Fj,u« M

NCQQO 34
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Deforming the contour

)\QQ ~r 4+ OO
14 :/ dq™ ACAD | / dq+V(q+)
0

_A2Q g + Qo

set Qo=q
Taylor expand I on the real side and do the integral
Q-|—
Q20" = [ drtit")

—QT
i"(Q")°
3

R

2607

Match powers of q-

35



Easy to calculate local operators on the Lattice

Consider the unordered correlator

D (t) = ) _(nle”""O1(t)02(0)|n)

n

convert thermal weight to evolution in imaginary time

6,
—({dTH(T)

D7 (—it) = A(T) =Tr |e
with time derivatives
D7 (—it) =i A(T)
But local operators are super simple

D~ (t=0) =i"*A(r = 0)
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Rotating everything to

Euclidean space and calculating
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Calculate in quark less SU(2) gauge theory

with non-perturbative renormalization
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New Results in SU(3)

Full expansion of terms "

. D .

i~ Y (ml Y (e = ) FHm)
n=0

q

Similar to exp ansion in Xiangdong Ji, PRL 110, 262002 (2013)
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Extracting g

Systematic uncertainty from estimating the range of the thermal cut

—I—) Qma:c =

q q —
g Qo Jg,., g +q
Qmin/max from HTL theory
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Extracting q

Systematic uncertainty from estimating the range of the thermal cut
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Outlook

® HPC is now almost an essential component of nuclear physics

® [arge scale simulations are being set up to model the
multi-scale phenomena in heavy-ion collisions

® Requires elaborate, compute intensive calibration procedure

® New methods being developed to look at jet transport coefficients
from first principles.

® Preliminary results consistent with phenomenological extraction



Thank you for your attention!



Non perturbative re-normalization

= Expectation value of Polyakov loop:
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= Two loop beta function
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= Nonperturbative correction T (MeV)

Tune A—c is independent of g
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