

Office of Science

High performance computing applied to static and dynamic phenomena in heavy-ion collisions

> Abhijit Majumder Wayne State University

Workshop on HPC in HEP, CCNU, Sept 19-21, 2018

Outline

Intro to heavy-ion collisions and jet quenching

The many scales of jet quenching

The range of measurables and observables

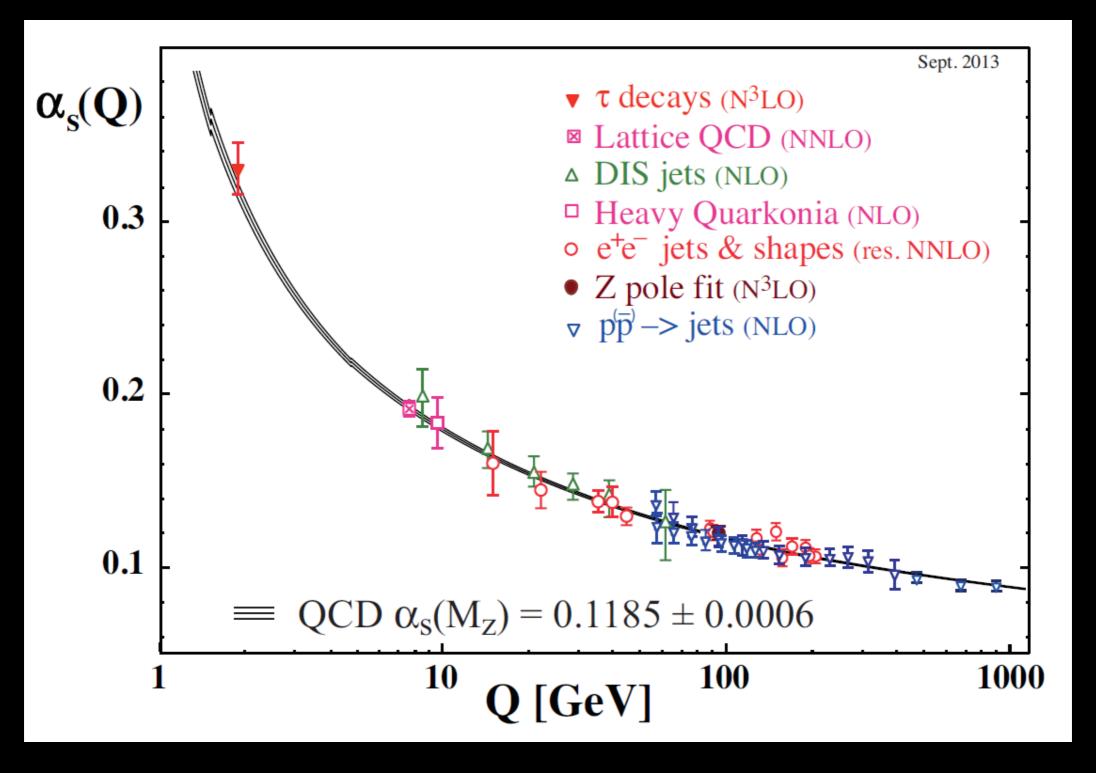
The JETSCAPE framework

Transport coefficients from first principles

Lattice calculations,

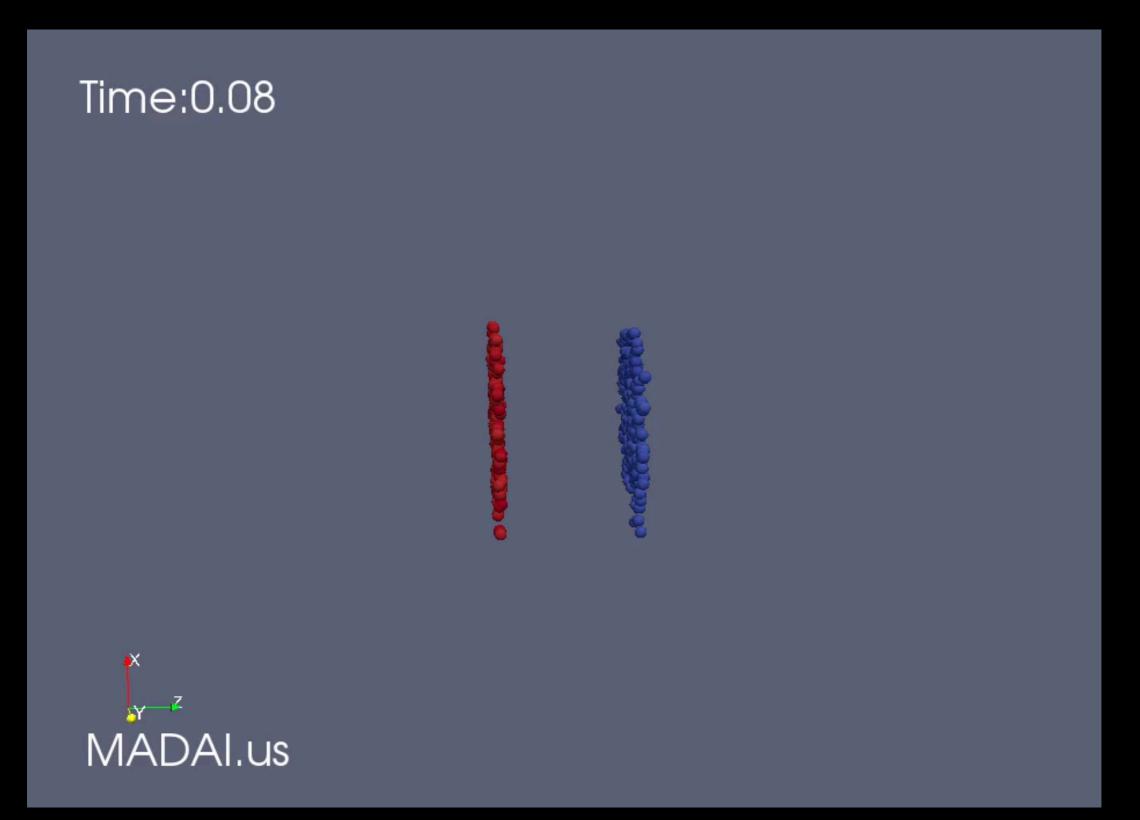
Outlook

QCD is all about scale!

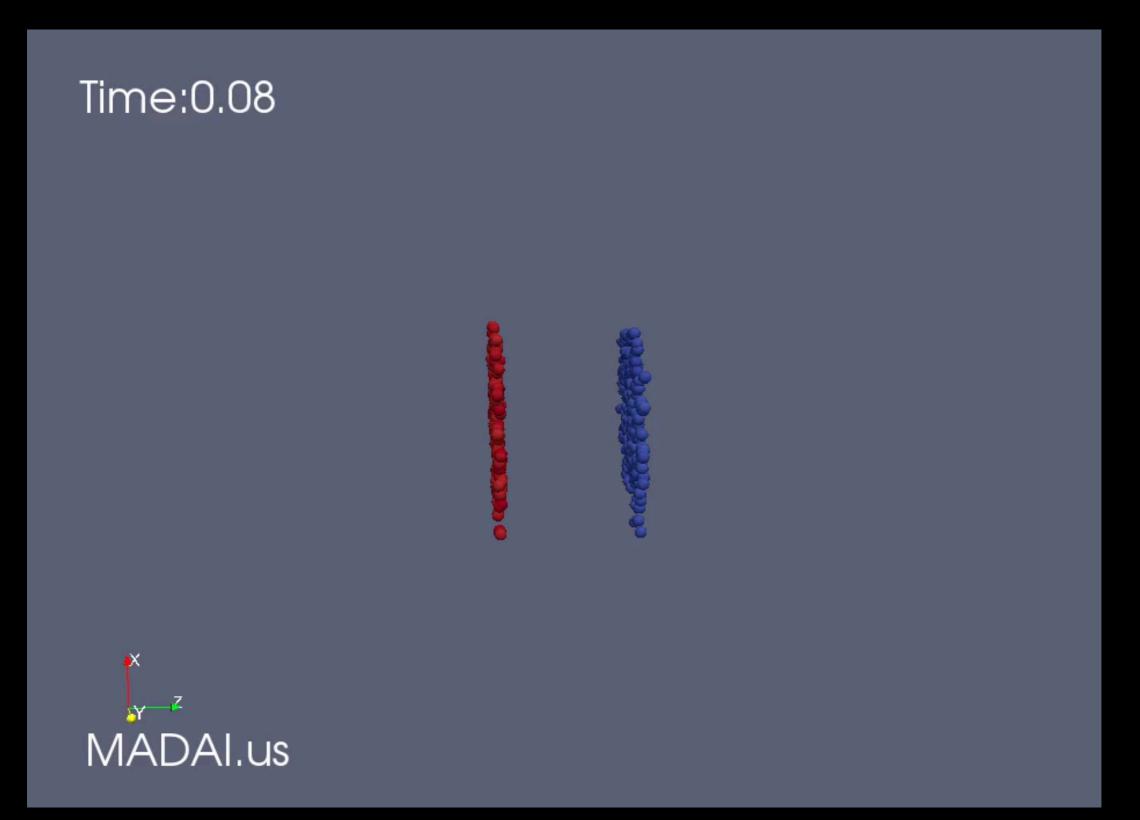


Heavy-ion collisions span the entire curve above

A near established paradigm, on the soft side

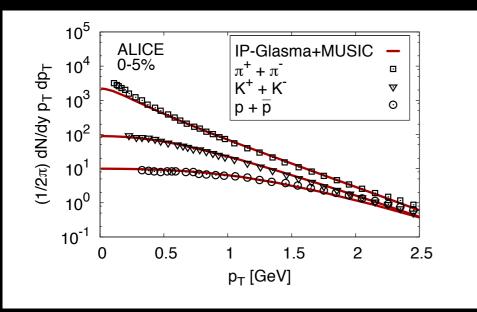


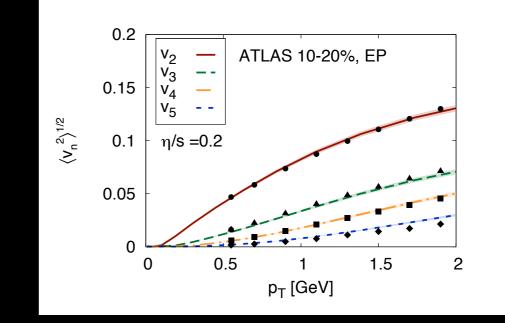
A near established paradigm, on the soft side

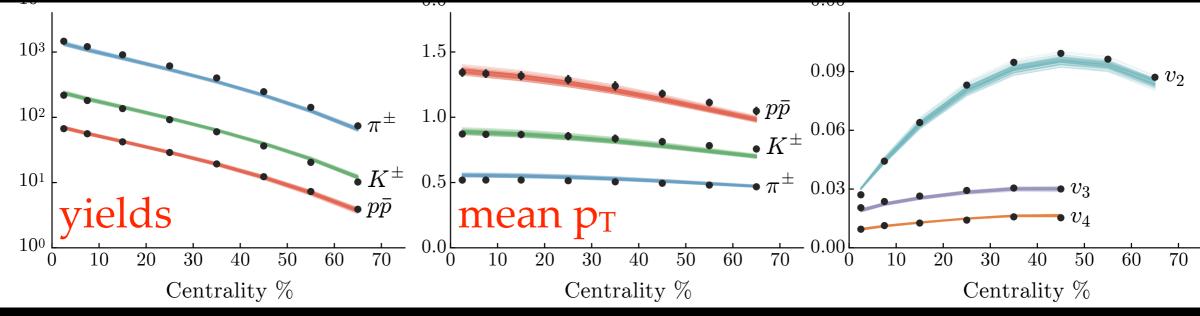


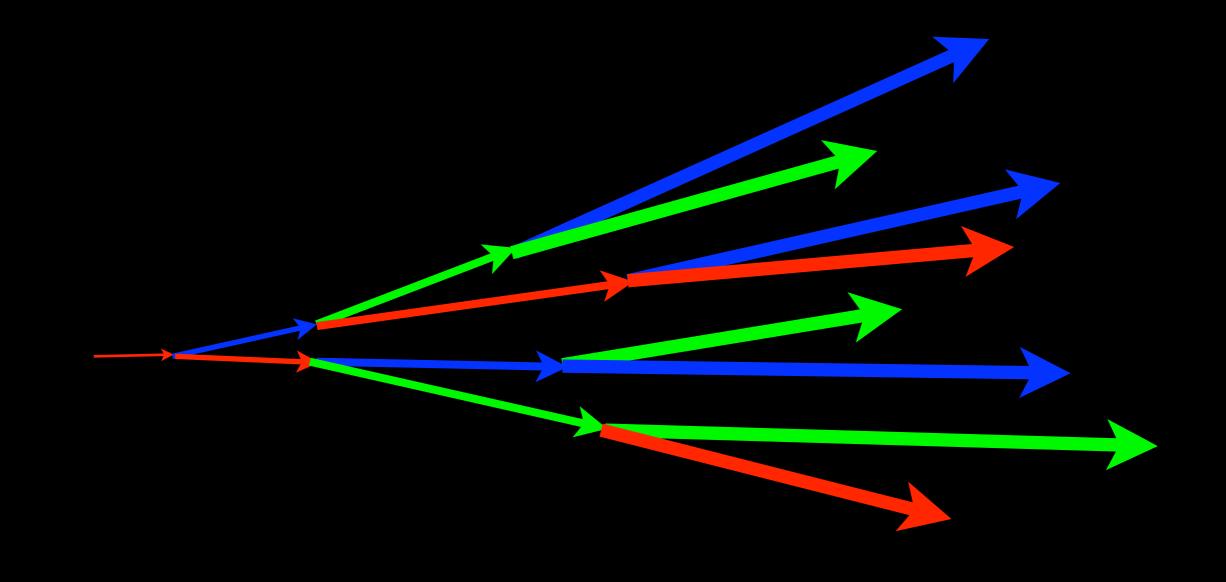
Well established results $p_T < 2GeV$

Excellent theoretical predictive power over "soft" spectrum both centrality and p_T dependence









6

6

6

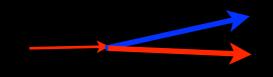
6

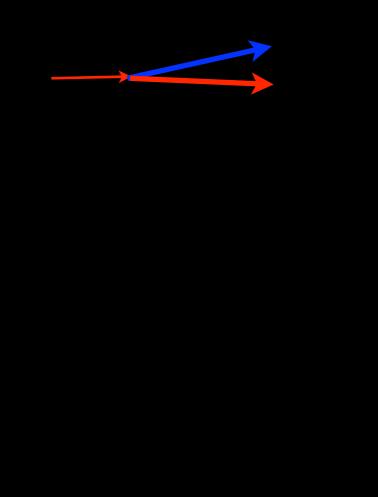
Many things happen to a jet and the energy deposited by the jet

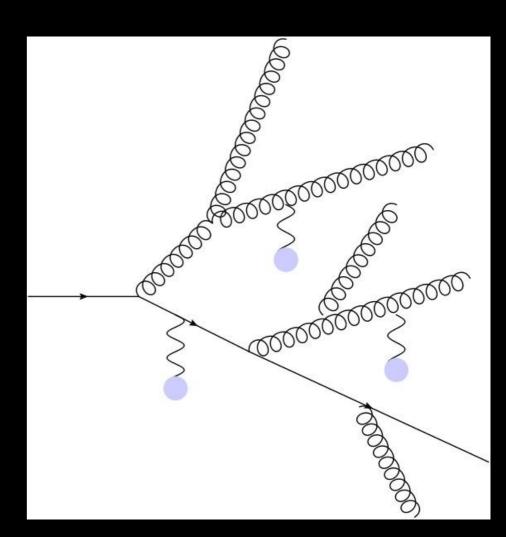
6

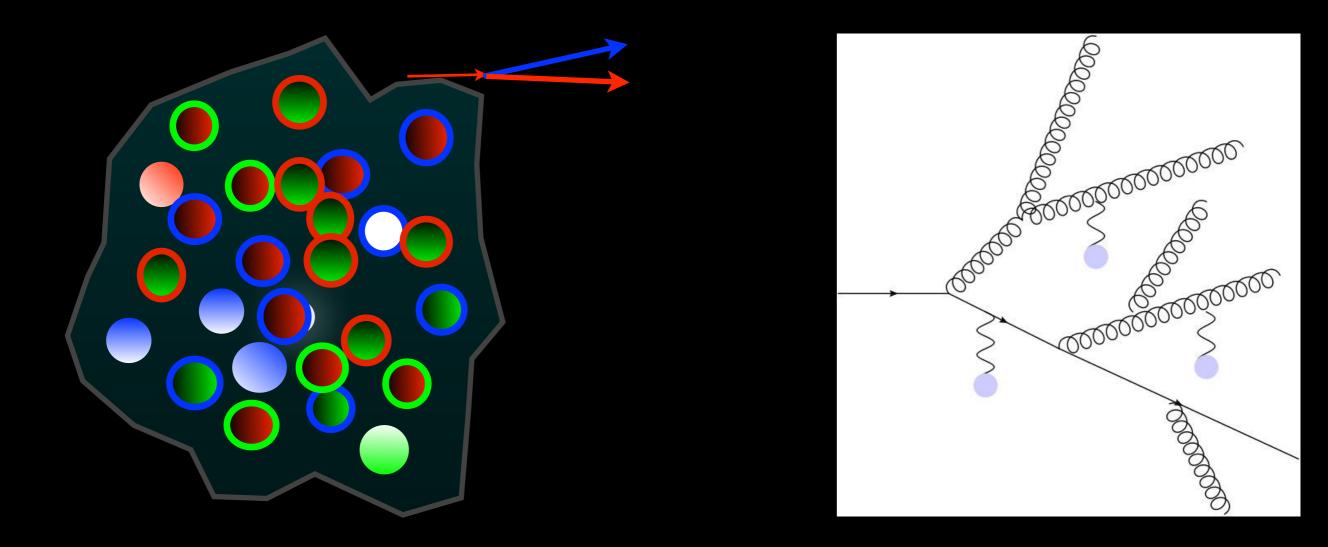
Many things happen to a jet and the energy deposited by the jet

Everything other than leading hadrons is strongly affected by the medium

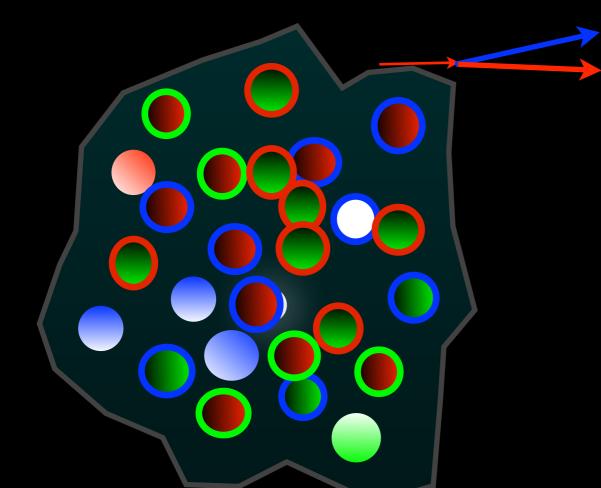


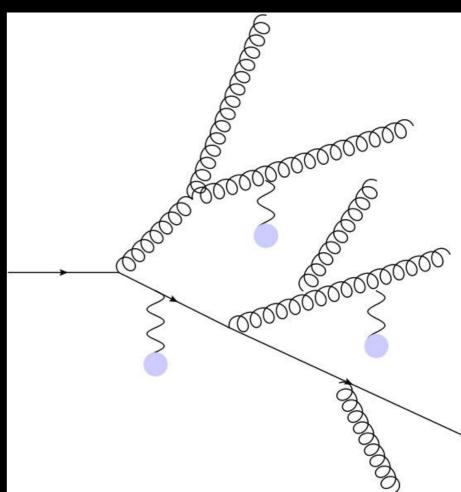




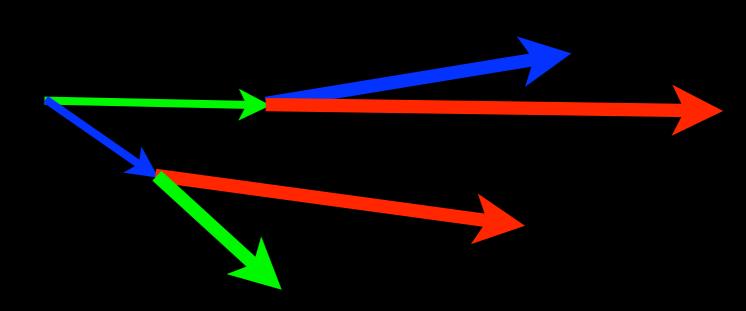


Radiation dominated regime





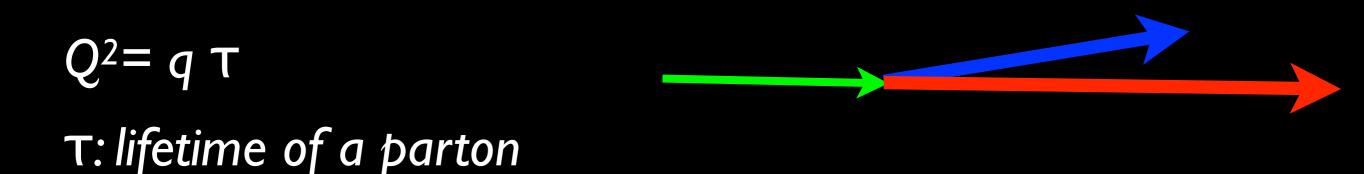
Theory: Higher Twist (X. Guo X.-N. Wang) MC: MATTER, YaJEM, Qin F P approach



Scattering dominated regime Few, time separated emissions

Theory: BDMPS, AMY MC: MARTINI, JEWEL, LBT

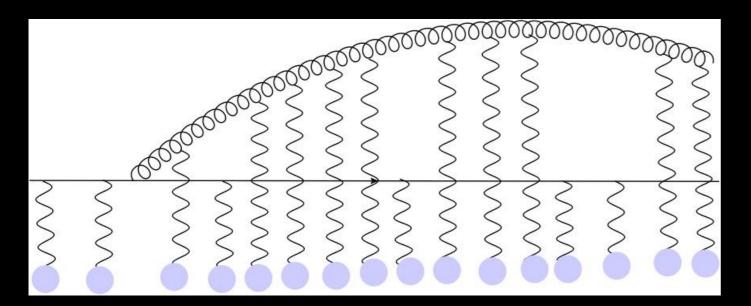
Scattering dominated regime Few, time separated emissions



Theory: BDMPS, AMY MC: MARTINI, JEWEL, LBT

Scattering dominated regime Few, time separated emissions

 $Q^2 = q T$ T: lifetime of a parton



Theory: BDMPS, AMY MC: MARTINI, JEWEL, LBT

• Many of these partons are absorbed by the medium

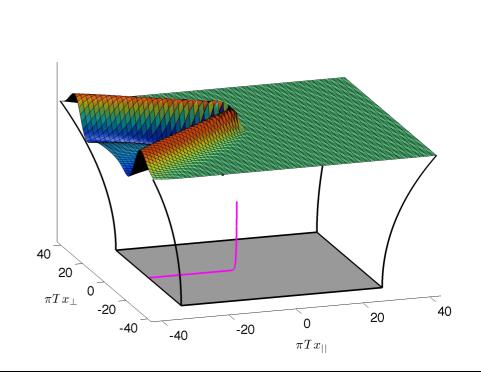
- Many of these partons are absorbed by the medium
- Cannot be described by pQCD

- Many of these partons are absorbed by the medium
- Cannot be described by pQCD
- Modeled ! (LBNL-CCNU, YaJEM, JEWEL)

- Many of these partons are absorbed by the medium
- Cannot be described by pQCD
- Modeled ! (LBNL-CCNU, YaJEM, JEWEL)
- Scale of parton same as scale of medium

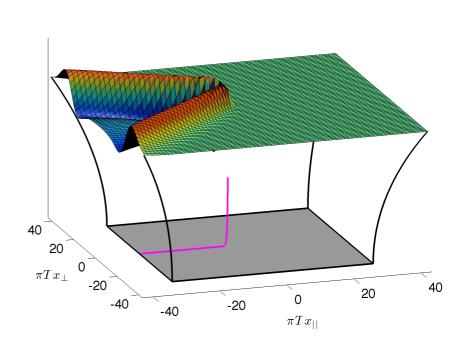
- Many of these partons are absorbed by the medium
- Cannot be described by pQCD
- Modeled ! (LBNL-CCNU, YaJEM, JEWEL)
- Scale of parton same as scale of medium
- AdS/CFT

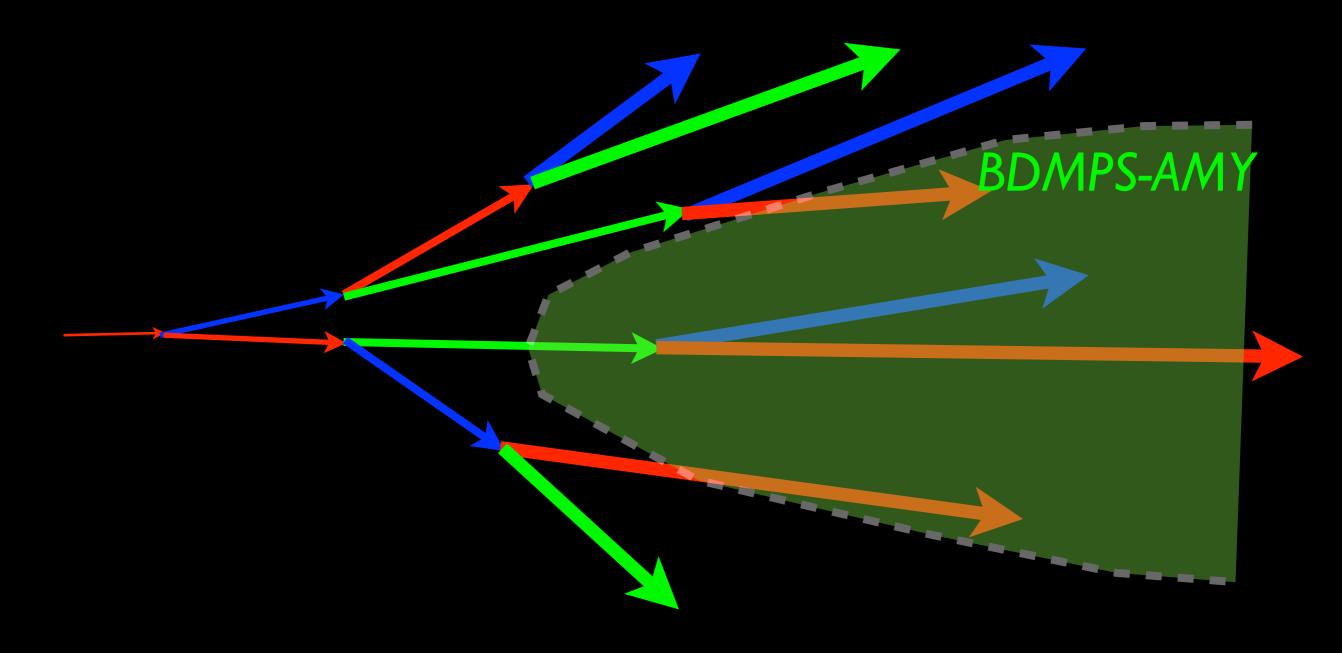
- Many of these partons are absorbed by the medium
- Cannot be described by pQCD
- Modeled ! (LBNL-CCNU, YaJEM, JEWEL)
- Scale of parton same as scale of medium
- AdS/CFT

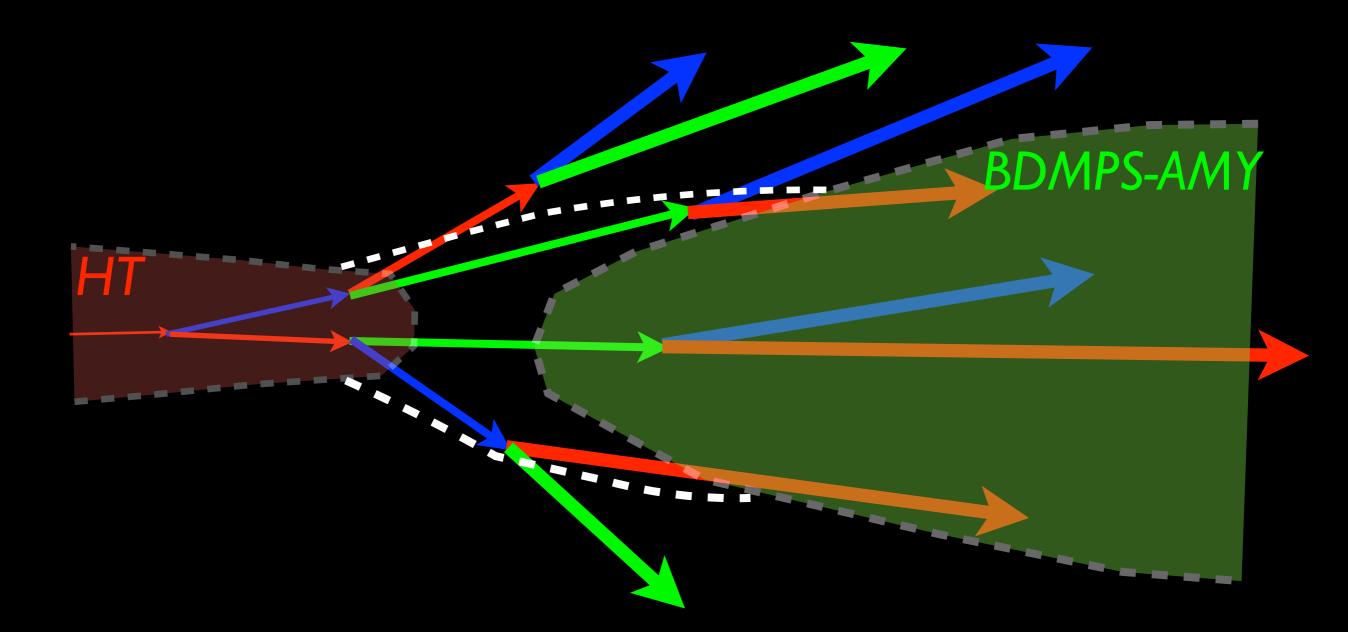


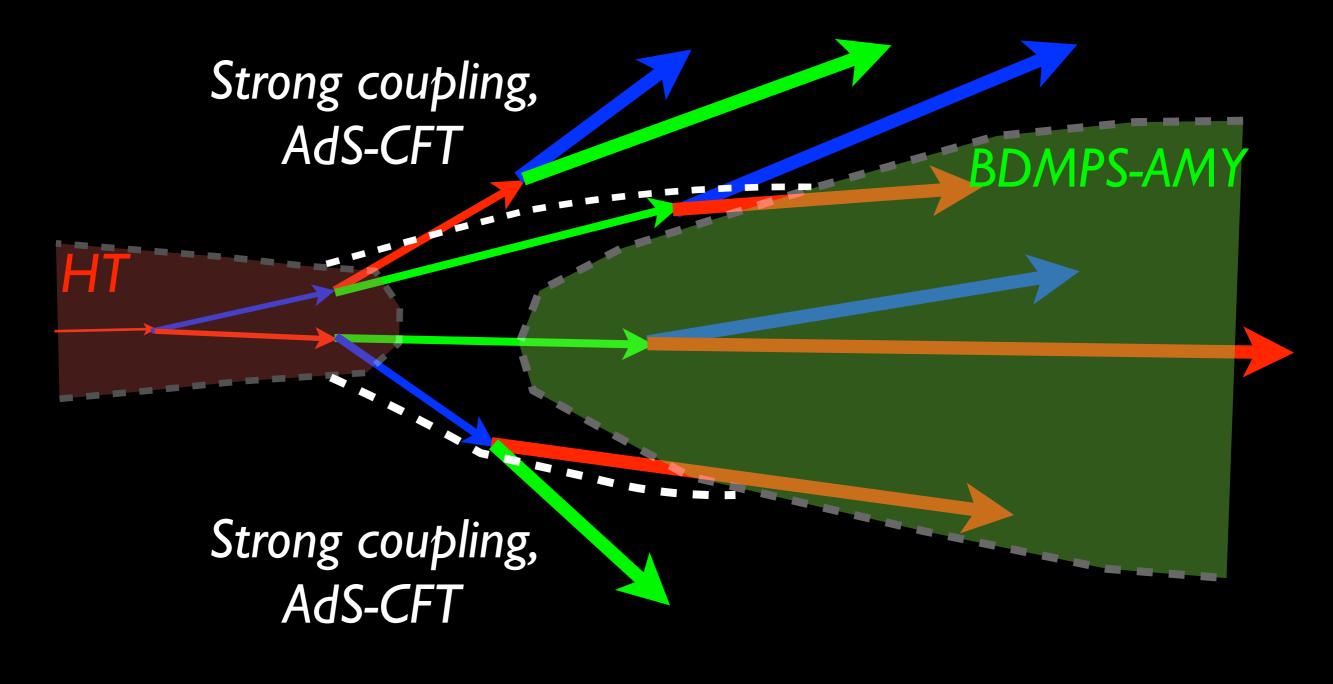
- Many of these partons are absorbed by the medium
- Cannot be described by pQCD
- Modeled ! (LBNL-CCNU, YaJEM, JEWEL)
- Scale of parton same as scale of medium
- AdS/CFT

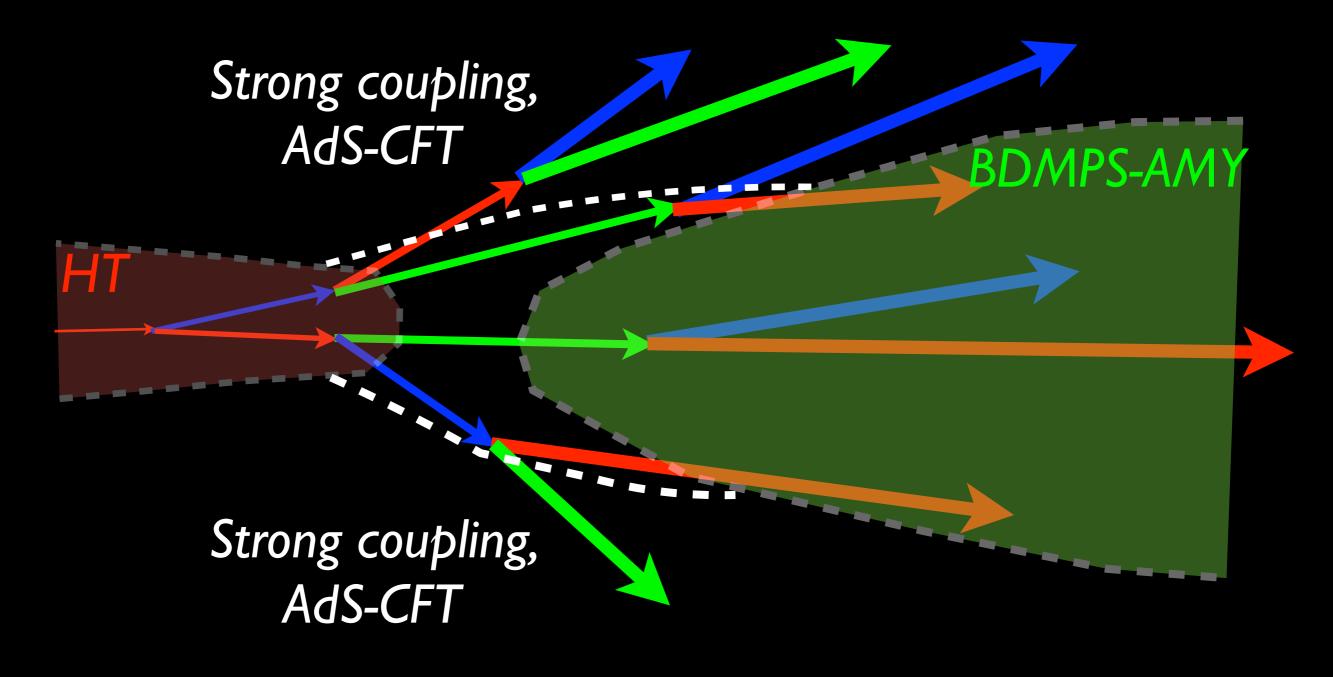
P. Chesler, W. Horowitz J. Casalderrey-Solana,G. Milhano, D. Pablos, K. Rajagopal





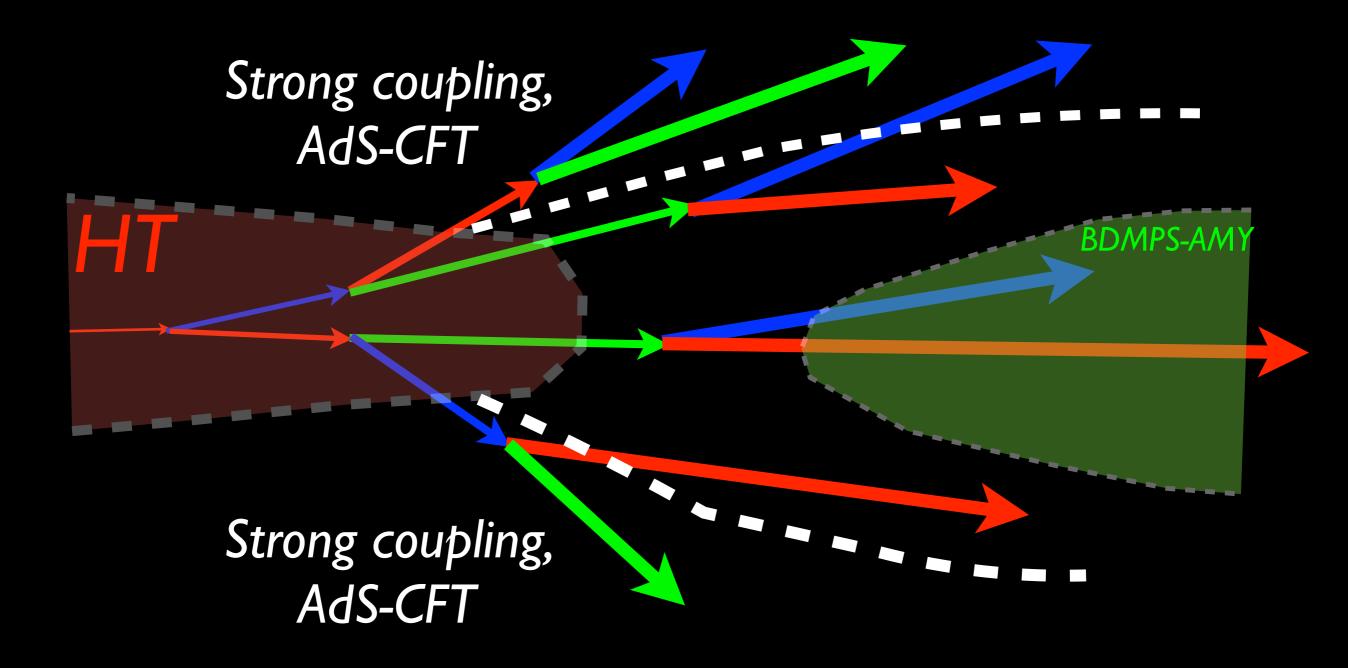






10

In an expanding QGP



10

In an expanding QGP

Energy deposition-thermalization

Strong coupling, AdS-CFT Energy thermalization

BDMPS-AM

Soft wide angle radiation

Strong coupling, AdS-CFT

Energy thermalization

Everything changes with scale in jet quenching

Everything changes with scale in jet quenching

Strong coupling, AdS-CFT Energy thermalization

BDMPS-AMY

Soft wide angle radiation Strong coupling, AdS-CFT

Energy thermalization

Everything changes with scale in jet quenching

Strong coupling, AdS-CFT Energy thermalization

BDMPS-AMY

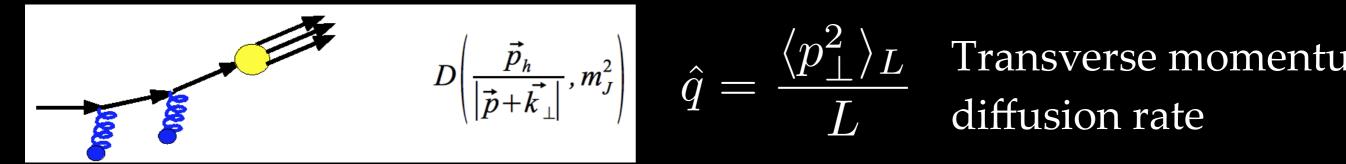
Soft wide angle radiation Strong coupling, AdS-CFT

Energy thermalization

Transport coefficients partons in a dense medium

 $p_z^2 \simeq E^2 - p_\perp^2$

 $p^+ \simeq p_\perp^2 / 2p^-$



$$D\left(\frac{p_{h}}{p-k},m_{J}^{2}\right) \quad \hat{e} = \frac{\langle \Delta E \rangle_{L}}{L} \quad \text{loss rate}$$

$$rate e_{2}$$

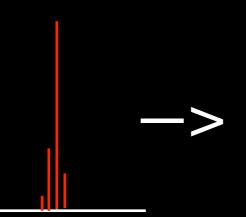
By definition, describe how the medium modifies the jet parton!

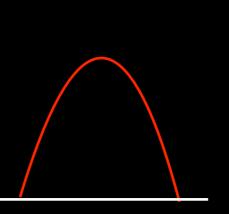
In general, 2 kinds of transport coefficients

Type 1: which quantify how the medium changes the jet

$$\hat{q}(E,Q^2) \qquad \hat{q}_4(E,Q^2) = \frac{\langle p_T^4 \rangle - \langle p_T^2 \rangle^2}{L} \dots$$
$$\hat{e}_2(E,Q^2) = \frac{\langle \delta E^2 \rangle}{L} \qquad \hat{e}_4(E,Q^2) = \frac{\langle \delta E^4 \rangle - \langle \delta E^2 \rangle^2}{L} \dots$$

Type 2: which quantify the space-time structure of the deposited energy momentum at the hydro scale





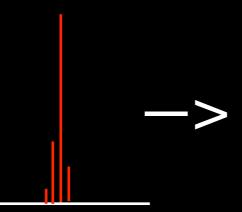
In general, 2 kinds of transport coefficients

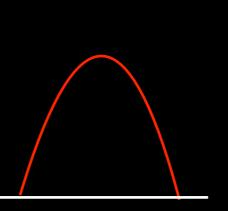
Type 1: which quantify how the medium changes the jet

$$\hat{q}(E,Q^2) \qquad \hat{q}_4(E,Q^2) = \frac{\langle p_T^4 \rangle - \langle p_T^2 \rangle^2}{L} \dots$$
$$\hat{e}(E,Q^2) \qquad \hat{e}_2(E,Q^2) = \frac{\langle \delta E^2 \rangle}{L} \qquad \hat{e}_4(E,Q^2) = \frac{\langle \delta E^4 \rangle - \langle \delta E^2 \rangle^2}{L} \dots$$

Type 2: which quantify the space-time structure of the deposited energy momentum at the hydro scale

 $\delta T^{\mu
u}$





In general, 2 kinds of transport coefficients

Type 1: which quantify how the medium changes the jet

$$\hat{q}(E,Q^2) \qquad \hat{q}_4(E,Q^2) = \frac{\langle p_T^4 \rangle - \langle p_T^2 \rangle^2}{L} \dots$$
$$\hat{e}(E,Q^2) = \hat{e}_2(E,Q^2) = \frac{\langle \delta E^2 \rangle}{L} \qquad \hat{e}_4(E,Q^2) = \frac{\langle \delta E^4 \rangle - \langle \delta E^2 \rangle^2}{L} \dots$$

Type 2: which quantify the space-time structure of the deposited energy momentum at the hydro scale



- 1. Observables that only depend on type 1
 - 1. Strong dependence on hard σ :
 - 1. Hadron R_{AA} , high $p_T v_2!$
 - 2. Dihadron, I_{AA} , γ -Hadron

- 1. Observables that only depend on type 1
 - 1. Strong dependence on hard σ :
 - 1. Hadron R_{AA} , high $p_T v_2!$
 - 2. Dihadron, I_{AA} , γ -Hadron

(clear dependence on q, but also require fragmentation functions)

- 2. Weaker dependence on hard σ :
 - 1. Near side I_{AA} ! (badly surface biased)

- 1. Observables that only depend on type 1
 - 1. Strong dependence on hard σ :
 - 1. Hadron R_{AA} , high $p_T v_2!$
 - 2. Dihadron, I_{AA}, γ-Hadron

(clear dependence on q, but also require fragmentation functions)

- 2. Weaker dependence on hard σ :
 - 1. Near side I_{AA} ! (badly surface biased)
- 2. Observables that depend on type 1 and some type 2
 - 1. Strong dependence on hard σ :
 - 1. Jet R_{AA} , high $p_T v_2!$
 - 2. DiJets (X_J), γ -Jet

- 1. Observables that only depend on type 1
 - 1. Strong dependence on hard σ :
 - 1. Hadron R_{AA} , high $p_T v_2!$
 - 2. Dihadron, I_{AA}, γ-Hadron

(clear dependence on q, but also require fragmentation functions)

- 2. Weaker dependence on hard σ :
 - 1. Near side I_{AA} ! (badly surface biased)
- 2. Observables that depend on type 1 and some type 2
 - 1. Strong dependence on hard σ :
 - 1. Jet R_{AA} , high $p_T v_2!$
 - 2. DiJets (X_J), γ -Jet

(reduce dependence on type 2 by increasing E, lose sensitivity, reduce R, requires resummation)

- 2. Weaker dependence on hard σ :
 - 1. z_g
 - 2. Jet Mass, Jet shape

- 1. Observables that only depend on type 1
 - 1. Strong dependence on hard σ :
 - 1. Hadron R_{AA} , high $p_T v_2!$
 - 2. Dihadron, I_{AA}, γ-Hadron

(clear dependence on q, but also require fragmentation functions)

- 2. Weaker dependence on hard σ :
 - 1. Near side I_{AA} ! (badly surface biased)
- 2. Observables that depend on type 1 and some type 2
 - 1. Strong dependence on hard σ :
 - 1. Jet R_{AA} , high $p_T v_2!$
 - 2. DiJets (X_J), γ -Jet

(reduce dependence on type 2 by increasing E, lose sensitivity, reduce R, requires resummation)

15

- 2. Weaker dependence on hard σ :
 - 1. z_g
 - 2. Jet Mass, Jet shape

3. Observables that depend strongly on type 2

Jet medium correlations

- 1. Observables that only depend on type 1
 - 1. Strong dependence on hard σ :
 - 1. Hadron R_{AA} , high $p_T v_2!$
 - 2. Dihadron, I_{AA} , γ -Hadron

(clear dependence on q, but also require fragmentation functions)

- 2. Weaker dependence on hard σ :
 - 1. Near side I_{AA} ! (badly surface biased)
- 2. Observables that depend on type 1 and some type 2
 - 1. Strong dependence on hard σ :
 - 1. Jet R_{AA} , high $p_T v_2!$
 - 2. DiJets (X_J), γ -Jet

(reduce dependence on type 2 by increasing E, lose sensitivity, reduce R, requires resummation)

15

- 2. Weaker dependence on hard σ :
 - 1. z_g
 - 2. Jet Mass, Jet shape

3. Observables that depend strongly on type 2

Jet medium correlations

- Observables that only depend on type 1 1.
 - 1. Strong dependence on hard σ :
 - 1. Hadron R_{AA} , high $p_T v_2!$
 - 2. Dihadron, I_{AA} , γ -Hadron

(clear dependence on q, but also require fragmentation functions)

- 2. Weaker dependence on hard σ :
 - 1. Near side I_{AA} ! (badly surface biased)
- 2. Observables that depend on type 1 and some type 2
 - 1. Strong dependence on hard σ :
 - 1. Jet R_{AA} , high $p_T v_2!$
 - 2. DiJets (X_I), γ -Jet

(reduce dependence on type 2 by increasing *E*, lose sensitivity, reduce *R*, requires resummation)

- 2. Weaker dependence on hard σ :
 - 1. Zg
 - 2. Jet Mass, Jet shape

3. Observables that depend strongly on type 2 Jet medium correlations

15

- 1. Observables that only depend on type 1
 - 1. Strong dependence on hard σ :
 - 1. Hadron R_{AA} , high $p_T v_2!$
 - 2. Dihadron, I_{AA}, γ-Hadron

(clear dependence on q, but also require fragmentation functions)

- 2. Weaker dependence on hard σ :
 - 1. Near side I_{AA} ! (badly surface biased)
- 2. Observables that depend on type 1 and some type 2
 - 1. Strong dependence on hard σ :
 - 1. Jet R_{AA} , high $p_T v_2!$
 - 2. DiJets (X_J), γ -Jet

(reduce dependence on type 2 by increasing E, lose sensitivity, reduce R, requires resummation)

- 2. Weaker dependence on hard σ :
 - 1. z_g
 - 2. Jet Mass, Jet shape

3. Observables that depend strongly on type 2 Jet medium correlations 15

What is the goal of this enterprise?

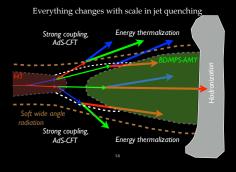
- We focus on about 5 jet coefficients, and 15 soft coefficients
- All of them are non-perturbative
- Determine these unambiguously from detailed phenomenology
- Have an extendable phenomenological framework
- Calculate them (if possible) from first principles
- Deeper understanding of the structure of the QGP.

Need to have a framework

- That can modularly incorporate a variety of theoretical approaches
- Which can allow you to model medium response, and entire range of transport coefficients
- Can address all observables simultaneously

Need to have a framework

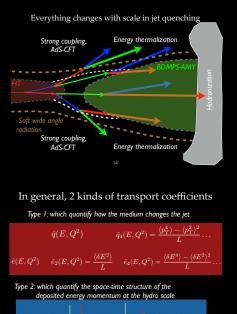
• That can modularly incorporate a variety of theoretical approaches



- Which can allow you to model medium response, and entire range of transport coefficients
- Can address all observables simultaneously

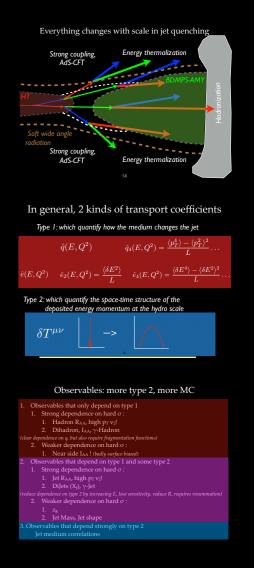
Need to have a framework

- That can modularly incorporate a variety of theoretical approaches
- Which can allow you to model medium response, and entire range of transport coefficients
- Can address all observables simultaneously



Need to have a framework

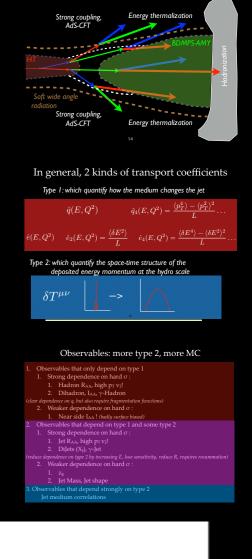
- That can modularly incorporate a variety of theoretical approaches
- Which can allow you to model medium response, and entire range of transport coefficients
- Can address all observables simultaneously



Need to have a framework

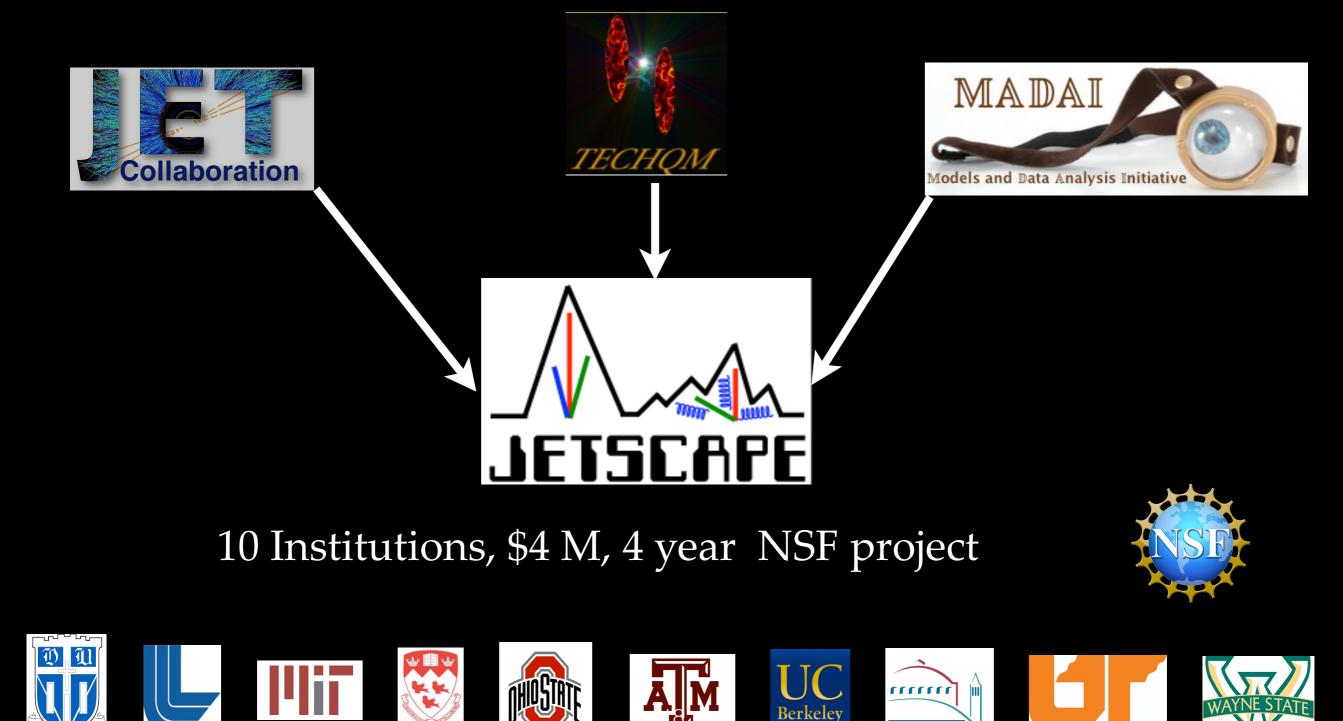
- That can modularly incorporate a variety of theoretical approaches
- Which can allow you to model medium response, and entire range of transport coefficients
- Can address all observables simultaneously

Such a framework now exists: JETSCAPE <u>https://github.com/JETSCAPE</u> 17



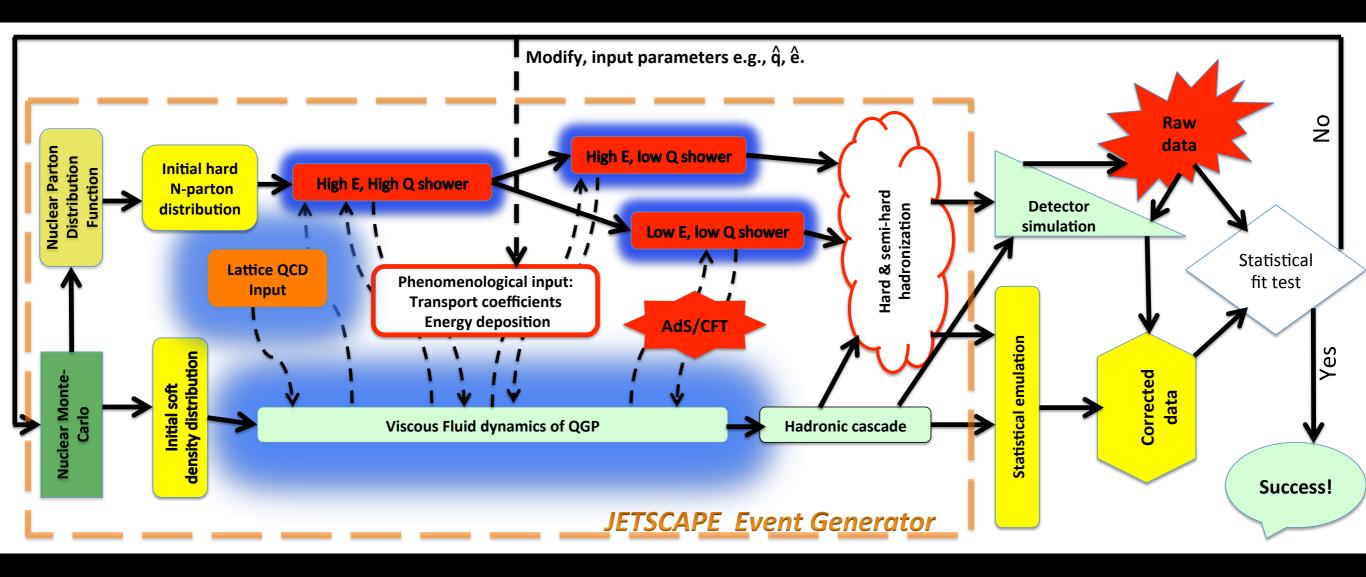
What is JETSCAPE?

Jet Energy-loss Tomography with a Statistically and Computationally Advanced Program Envelope.



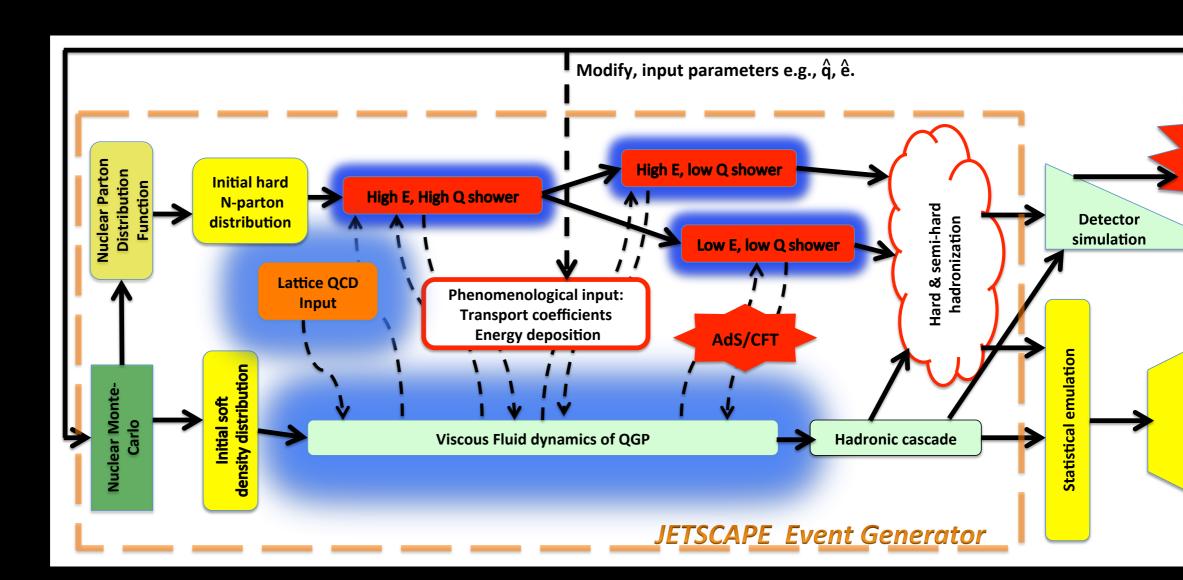
How would this work?





2 streams: one CPU stream and one GPU stream Ideal for hybrid architecture. 19

How would this work?



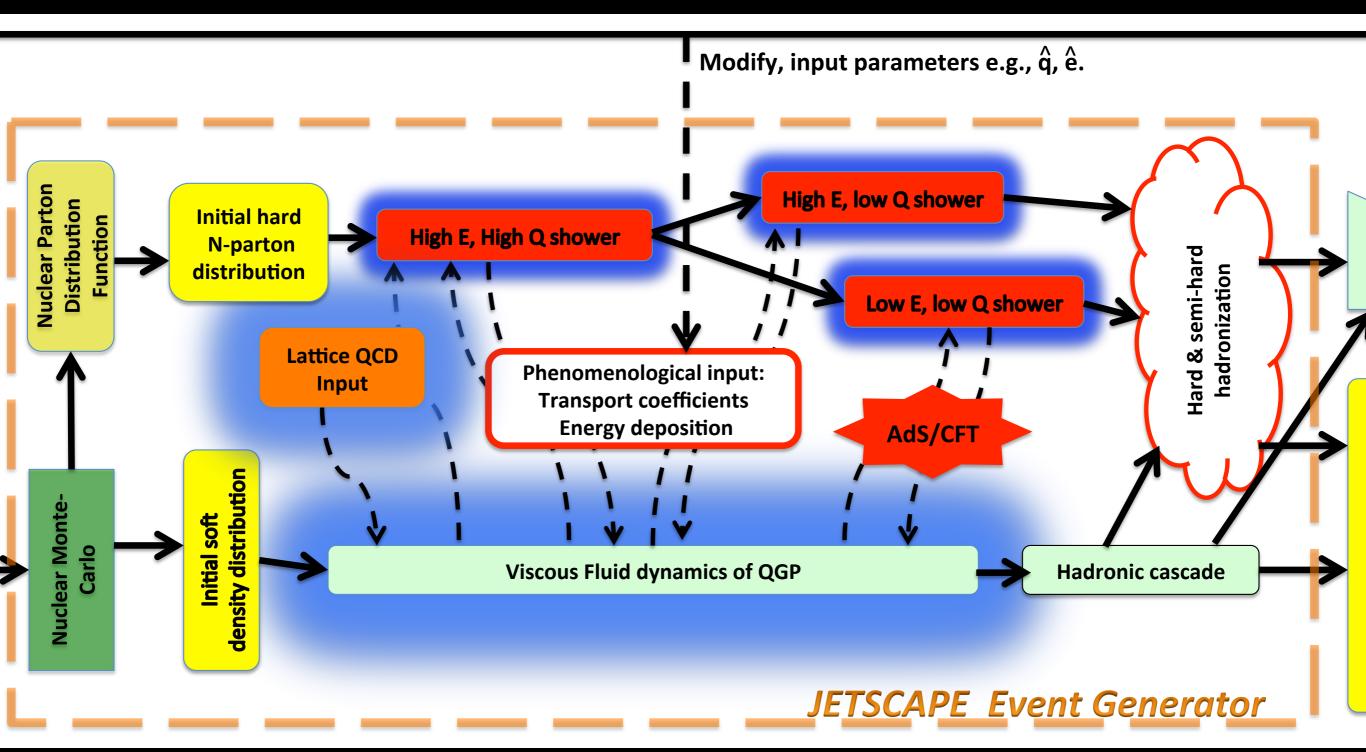
JETSCI

RPF

2 streams: one CPU stream and one GPU stream Ideal for hybrid architecture.

How would this work?

JETS



2 streams: one CPU stream and one GPU stream Ideal for hybrid architecture.

Calibrating/tuning the generator

Need a Bayesian analysis to determine best value of 20 parameters

Each require 25 values that have to be sampled

Thus Number of sample points = 500.

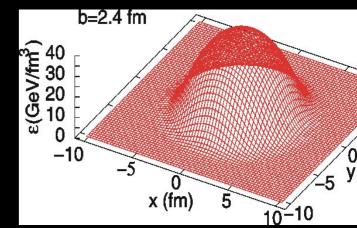
We need 500 X 3 energies X 5 Centralities X 400 events = 3,000,000 events

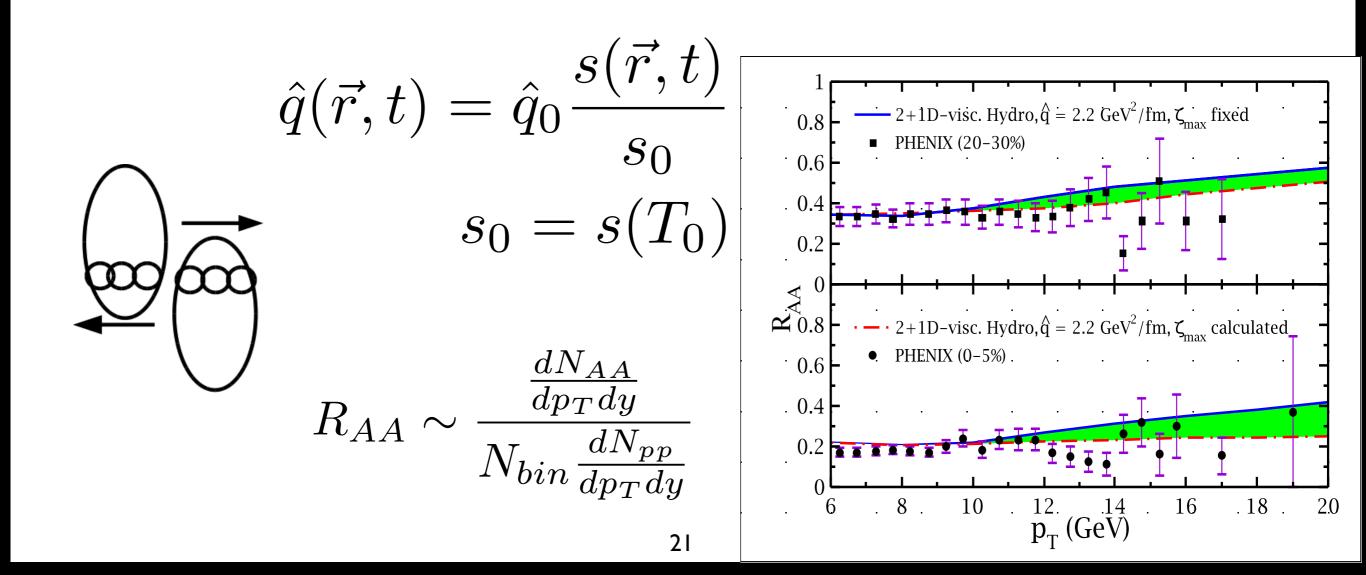
1 JETSCAPE event takes 1hr on default node { 8 core + 1P100 GPU}

After we do all of this, the parameters will be determined ...

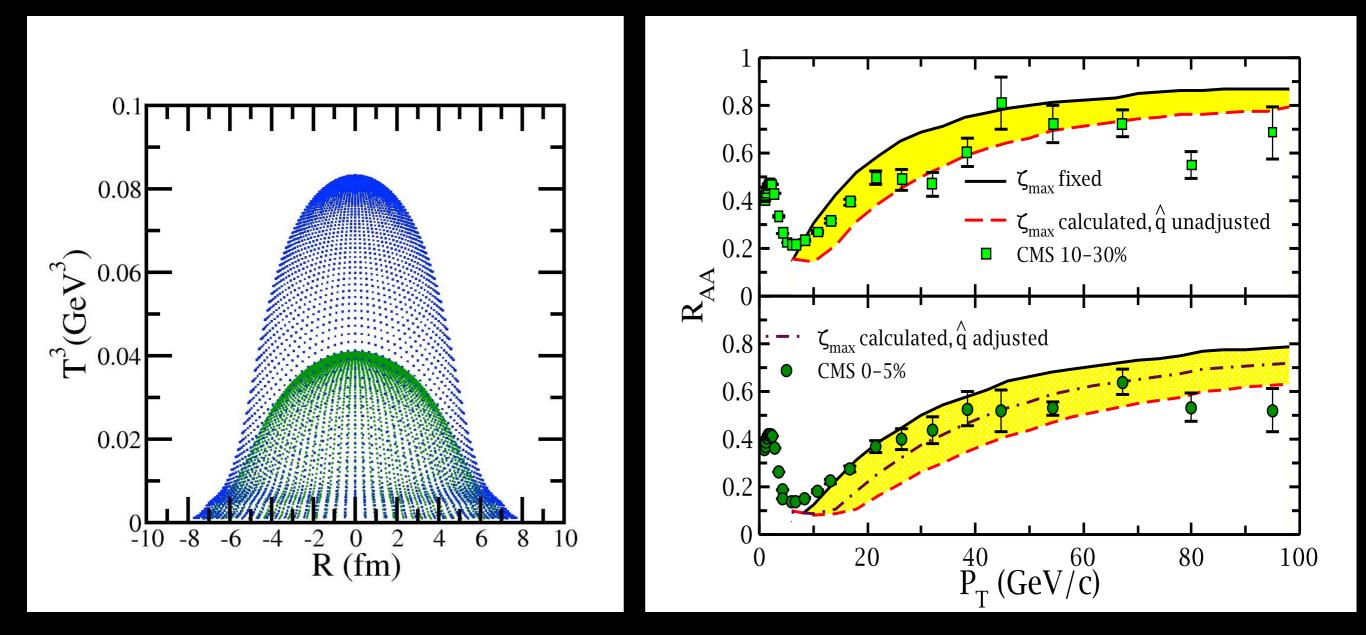
In all calculations presented bulk medium described by viscous fluid dynamics

Medium evolves hydro-dynamically as the jet moves through it Fit the \hat{q} for the initial T in the hydro in central coll.



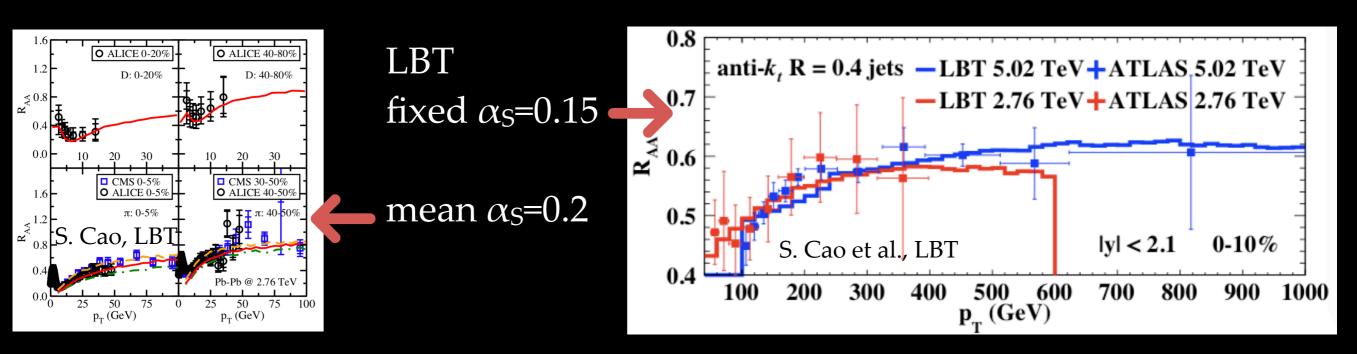


From RHIC to LHC, refit hydro

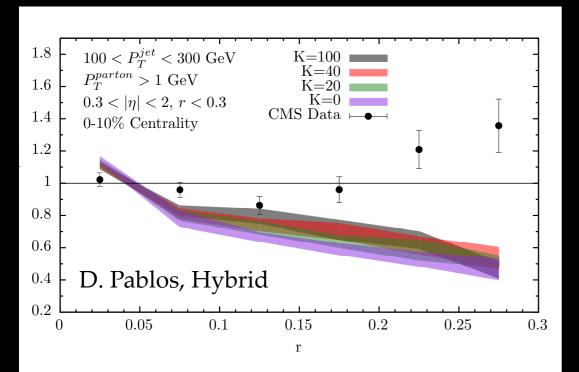


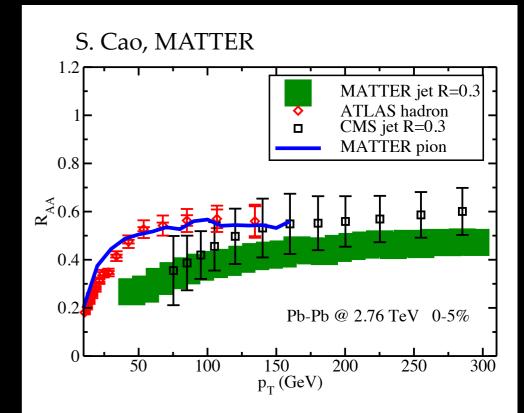
q should scale with an intrinsic quantity in the hydro

Necessity of Multi-scale models Its the right thing to do. Pushing limited approaches past limits creates tension!

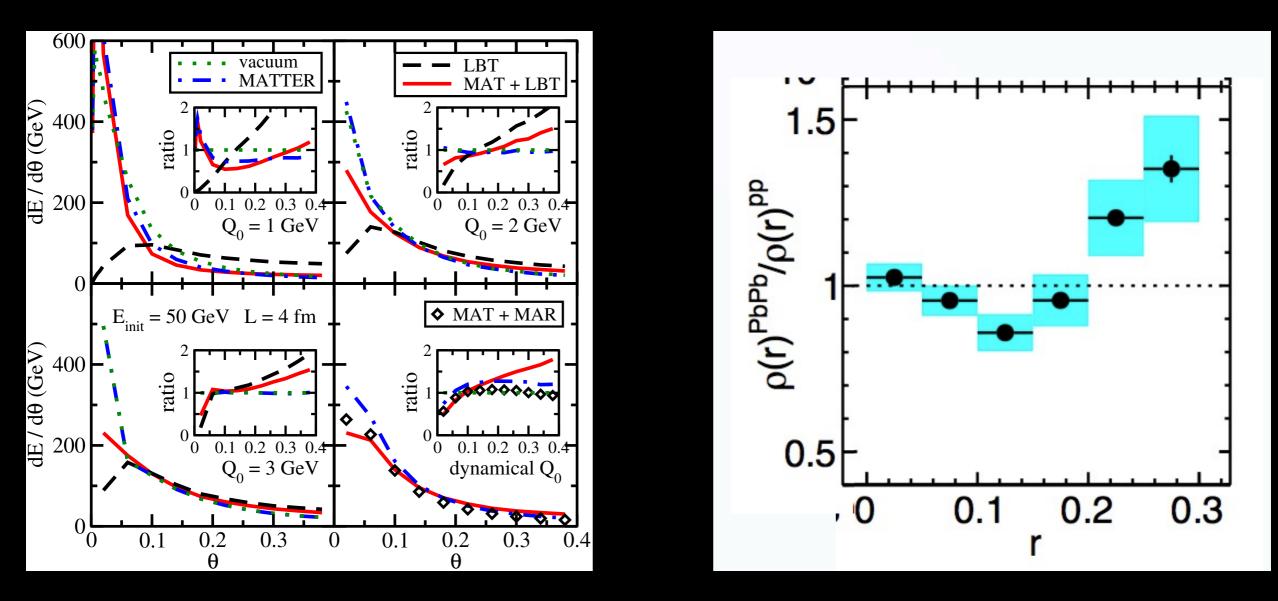


23

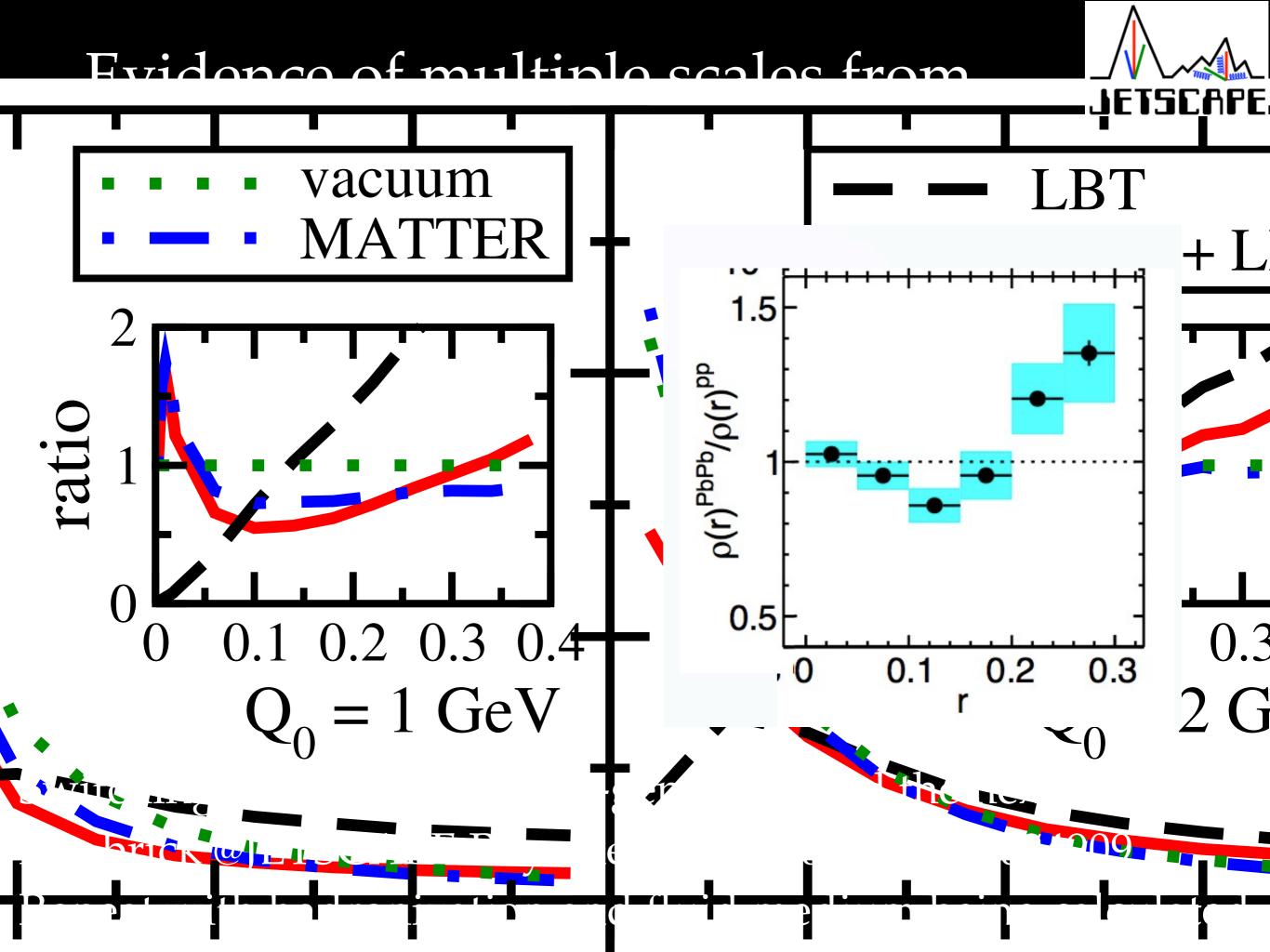




Evidence of multiple scales from multiple-stage Monte Carlos



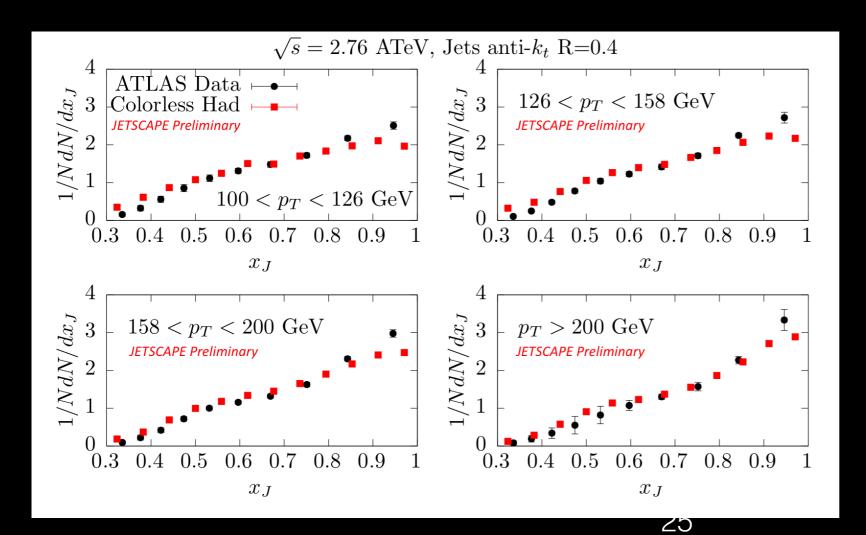
Switching between one event-generator and the next in a brick @JETSCAPE Phys.Rev. C96 (2017) no.2, 024909 Repeat with hadronization and fluid medium being calculated

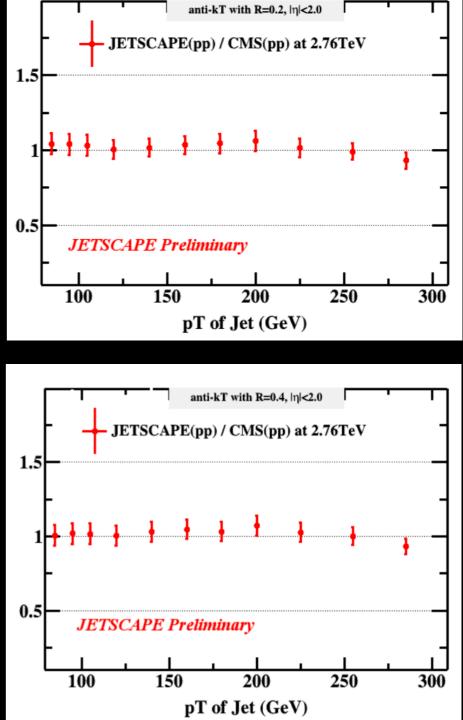


Using the full event generator

Any good event generator needs a good p-p baseline

PYTHIA for initial state MATTER for all final state partons > 1GeV PYTHIA based hadronization of final partons

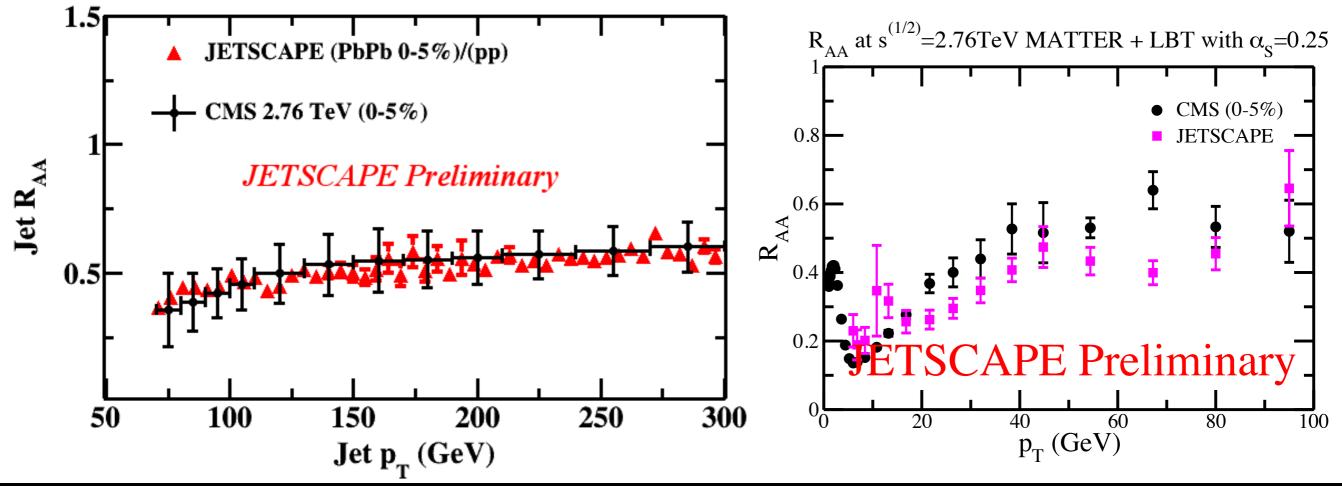




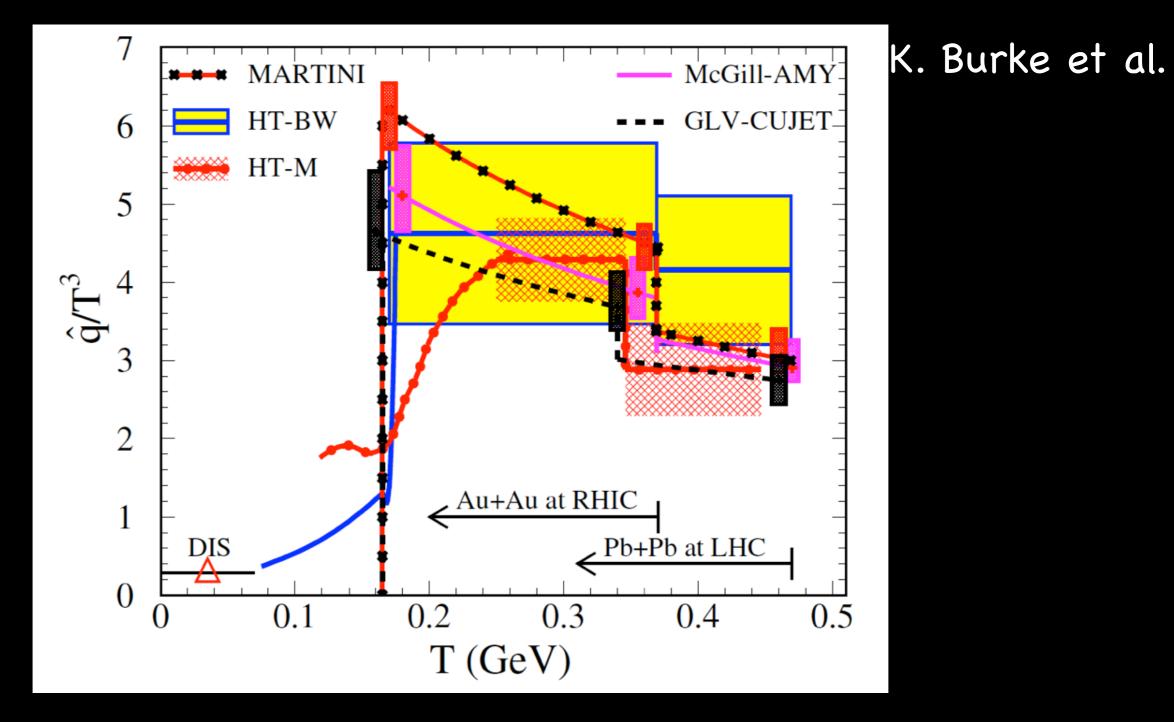
Preliminary results from JETSCAPE

Initial state with TRENTO for both hydro and jets TRENTO —> PreEquib—> MUSIC —> Soft Hadronization TRENTO —> PYTHIA init

- -> (MATTER/LBT/MARTINI/AdS) + MUSIC profile
- -> PYTHIA based hadronization

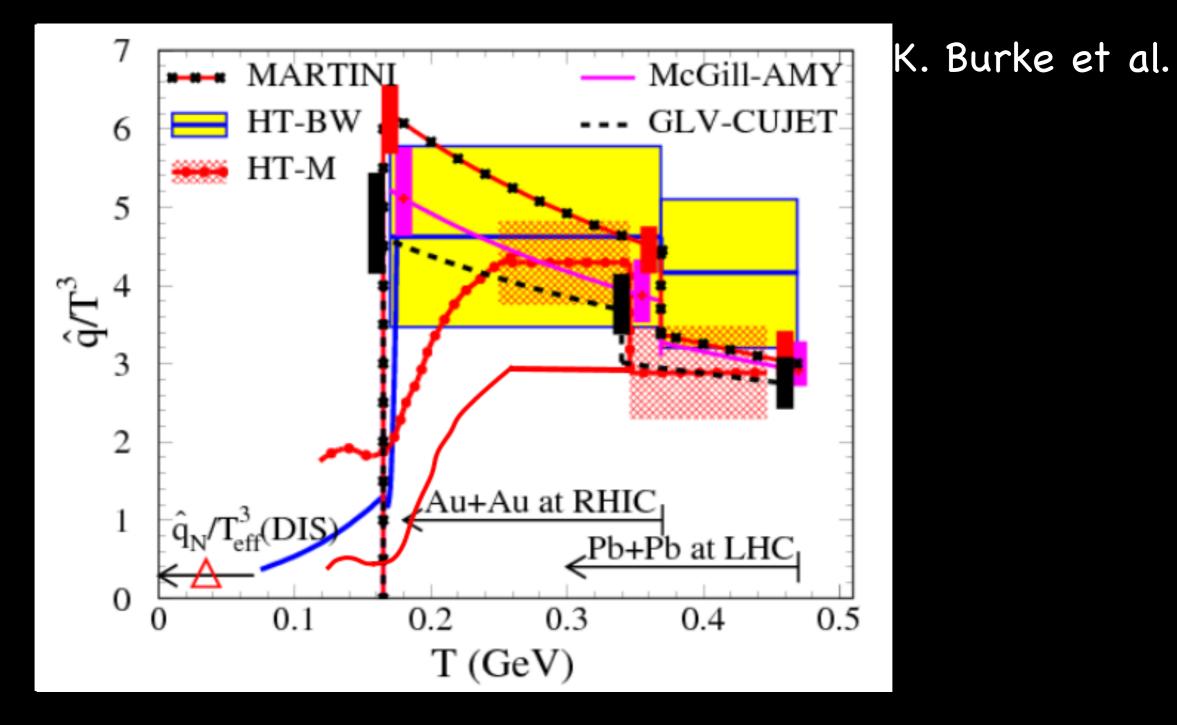


Consistent with Results from the JET collaboration



Did separate fits to the RHIC and LHC data for maximal **q** without assuming any kink in the **q** vs T³ curve

Consistent with Results from the JET collaboration



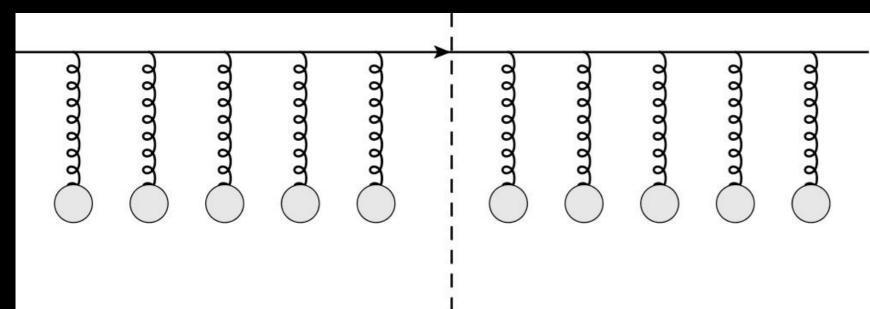
Did separate fits to the RHIC and LHC data for maximal **q** without assuming any kink in the **q** vs T³ curve

Back to the question of how the medium effects the parton.

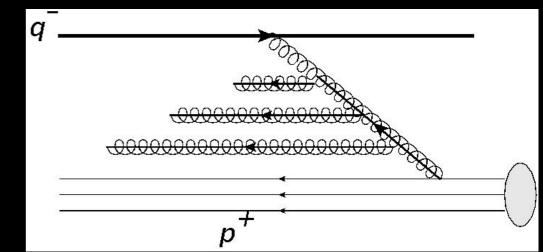
A parton in a jet shower, has momentum components

 $q = (q, q, q) = (1, \lambda^2, \lambda)Q$, Q: Hard scale, $\lambda \ll 1$, $\lambda Q \gg \Lambda_{QCD}$

28



hence, gluons have $k_{\perp} \sim \lambda Q, \quad k^+ \sim \lambda^2 Q$ could also have $k^- \sim \lambda Q$



Assuming the medium has a large length.

Or, the parton has a long life time, $1/(\lambda^2 Q)$

Multiple independent scattering dominates over multiple correlated scattering

Resumming gives a diffusion equation for the p_T distribution

$$\frac{\partial f(p_{\perp}, t)}{\partial t} = \nabla_{p_{\perp}} \cdot D \cdot \nabla_{p_{\perp}} f(p_{\perp}, t)$$
$$\langle p_{\perp}^2 \rangle = 4Dt$$

$$\hat{q} = \frac{p_{\perp}^2}{t} = \frac{2\pi^2 \alpha_s C_R}{N_c^2 - 1} \int d\tilde{t} \langle F^{\mu\alpha}(\tilde{t}) v_{\alpha} F^{\beta}_{\mu}(0) v_{\beta} \rangle$$

Assuming the medium has a large length.

Or, the parton has a long life time, $1/(\lambda^2 Q)$

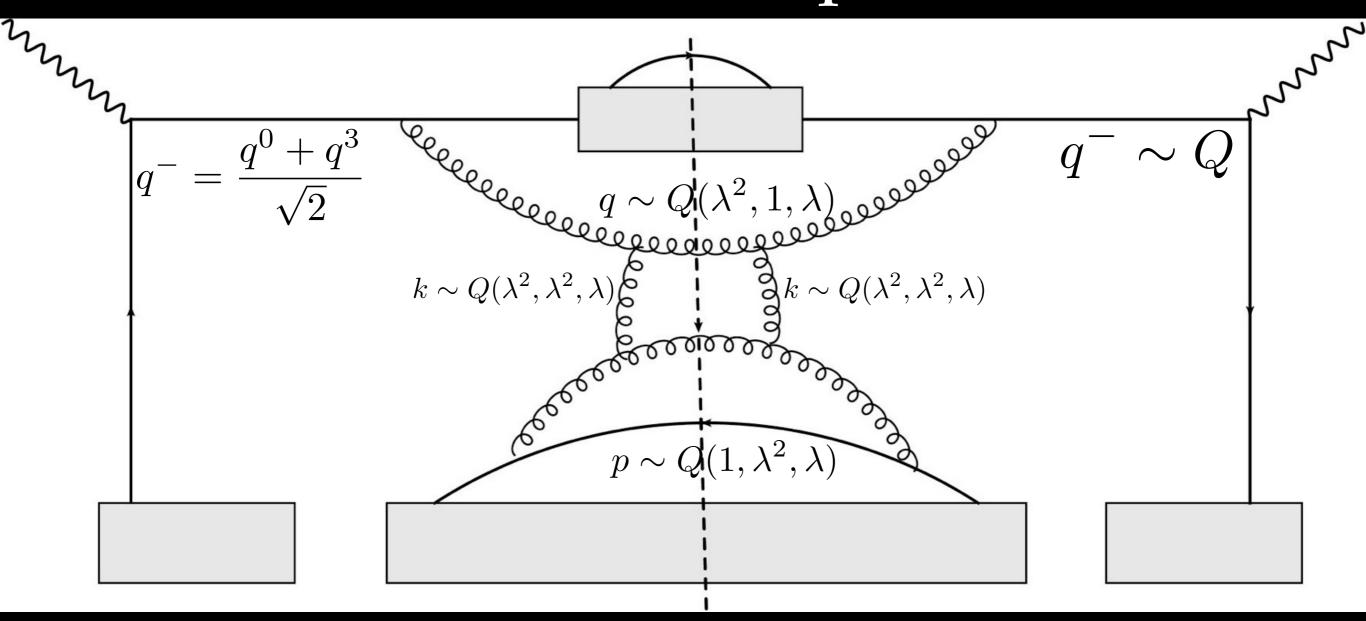
Multiple independent scattering dominates over multiple correlated scattering

Resumming gives a diffusion equation for the p_T distribution

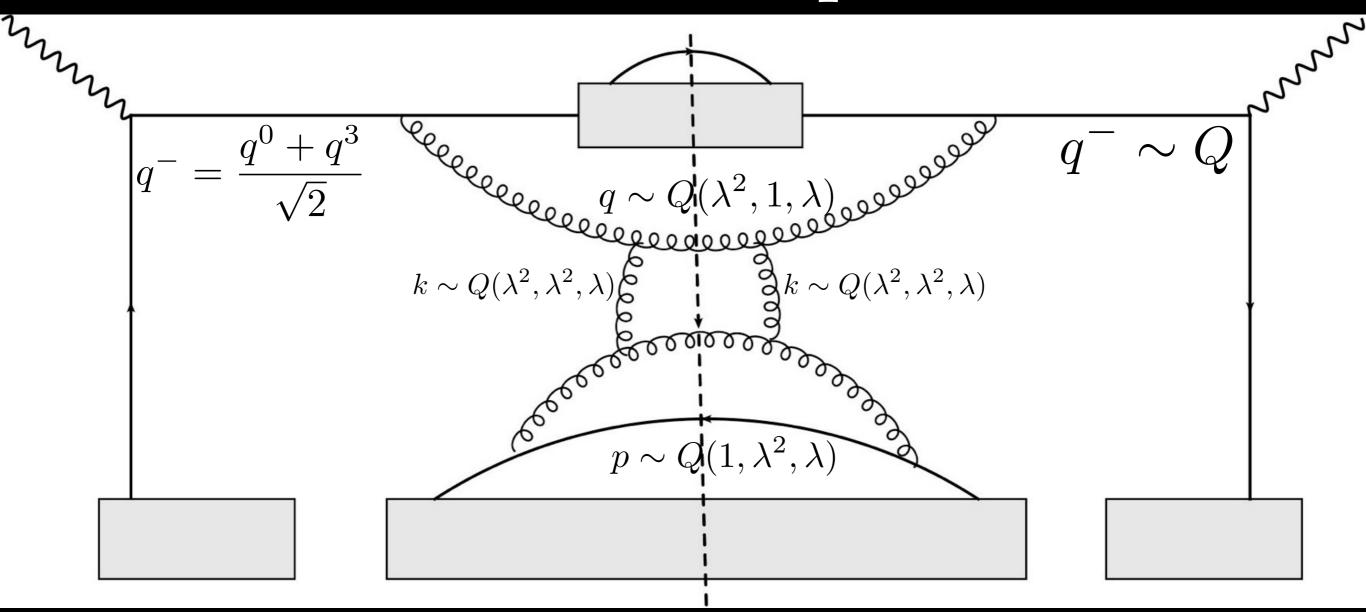
$$\begin{array}{c} \overbrace{} & \frac{\partial f(p_{\perp},t)}{\partial t} = \nabla_{p_{\perp}} \cdot D \cdot \nabla_{p_{\perp}} f(p_{\perp},t) \\ & \langle p_{\perp}^2 \rangle = 4Dt \end{array}$$

$$\hat{q} = \frac{p_{\perp}^2}{t} = \frac{2\pi^2 \alpha_S C_R}{N_c^2 - 1} \int dt \left\langle X \left| \text{Tr} \left[\mathbf{U}^{\dagger}(\mathbf{t}, \mathbf{vt}; 0) \mathbf{t}^{\mathbf{a}} \mathbf{F}^{\mathbf{a}\mu\rho} \mathbf{v}_{\rho} \mathbf{U}(\mathbf{t}, \mathbf{vt}; 0) \mathbf{t}^{\mathbf{b}} \mathbf{F}^{\mathbf{b}}{}_{\mu}^{\sigma}(0) \mathbf{v}_{\sigma} \right] \right| X \right\rangle$$

A factorized picture

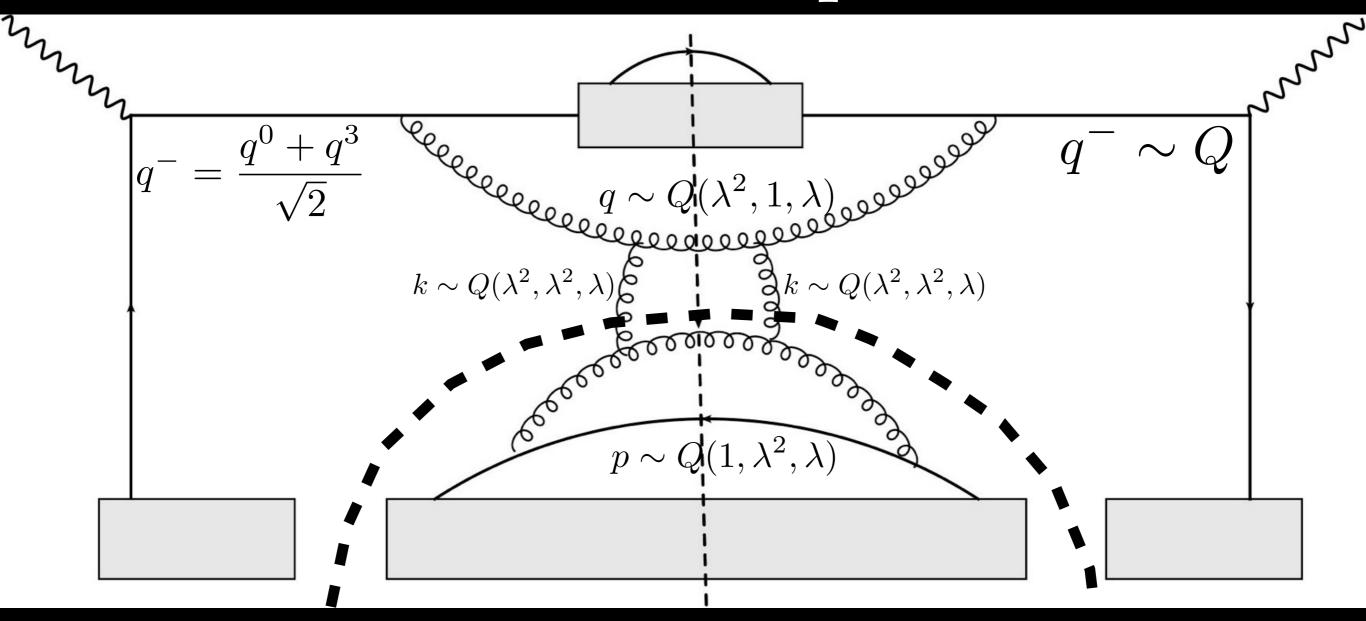


A factorized picture



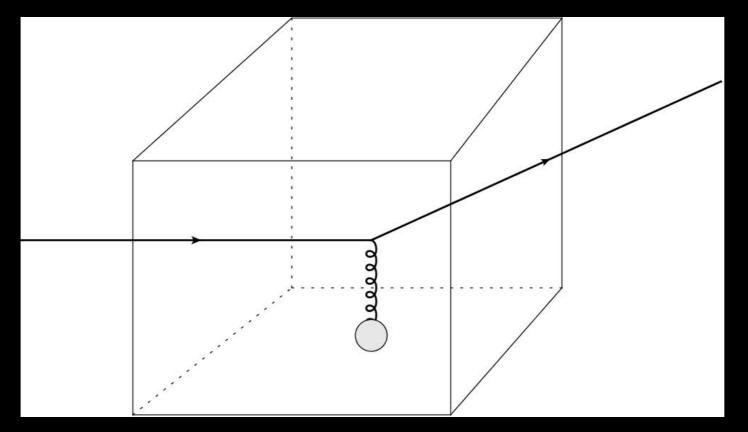
Q is the hard scale of the jet ~ E Q λ is a semi-hard scale ~ (ET)^{1/2}, $\lambda \rightarrow 0$ q contains all dynamics below Q λ

A factorized picture



Q is the hard scale of the jet ~ E Q λ is a semi-hard scale ~ (ET)^{1/2}, $\lambda \rightarrow 0$ q contains all dynamics below Q λ

A first principles method to calculate \hat{q}



$$W(k) = \frac{g^2}{2N_c} \langle q^-; M | \int d^4x d^4y \bar{\psi}(y) \ \mathcal{A}(y)\psi(y)$$

$$\times |q^- + k_{\perp}; X \rangle \langle q^- + k_{\perp}; X |$$

$$\times \bar{\psi}(x) \ \mathcal{A}(x)\psi(x) | q^-; M \rangle$$

$$W(k)$$

in terms of W, we get

Final state is ``on-shell''

$$\delta[(q+k)^2] \simeq \frac{1}{2q^-} \delta\left(k^+ - \frac{k_\perp^2}{2q^-}\right)$$

Also we are calculating in a finite temperature heat bath

$$\hat{q} = \frac{4\pi^2 \alpha_s}{N_c} \int \frac{dy^- d^2 y_\perp}{(2\pi)^3} d^2 k_\perp e^{-i\frac{k_\perp^2}{2q^-} \cdot y^- + i\vec{k}_\perp \cdot \vec{y_\perp}} \frac{\vec{k}_\perp \cdot \vec{y}_\perp}{\sqrt{n}|\frac{e^{-\beta E_n}}{Z} F^+, \perp (y^-)F_\perp^+(0)|n\rangle}$$

physical
$$\hat{q}(q^-, q^+)$$
 where $q^+ \sim \lambda^2 Q$

Consider a more general object

$$\hat{Q} = \frac{4\pi^2 \alpha_s}{N_c} \int \frac{d^4 y d^4 k}{(2\pi)^4} e^{ik \cdot y} \frac{2(q^-)^2}{\sqrt{2}q^-} \frac{\langle M | F^{+\perp}(0) F_{\perp,}^+(y) | M \rangle}{(q+k)^2 + i\epsilon}.$$
Consider q large (~Q) and fixed
Consider q to be a variable

$$\frac{d^2 \hat{Q}}{dk_{\perp}^2} \text{ has a pole at } q^+ = \frac{k_{\perp}^2}{2q^-}$$

$$\hat{Q} \text{ has a branch cut on the real axis}$$

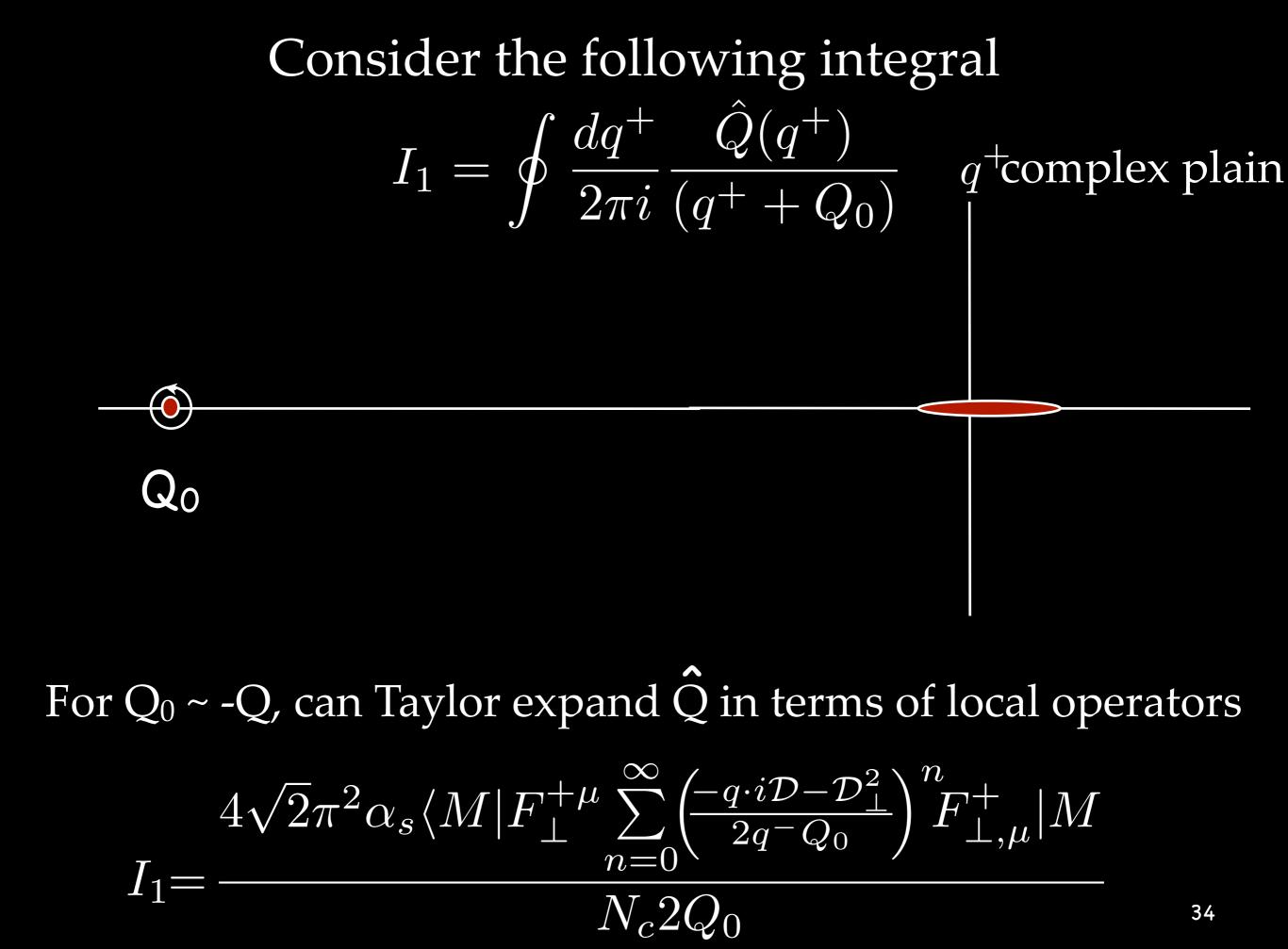
$$at q^+ \sim \lambda^2 O$$

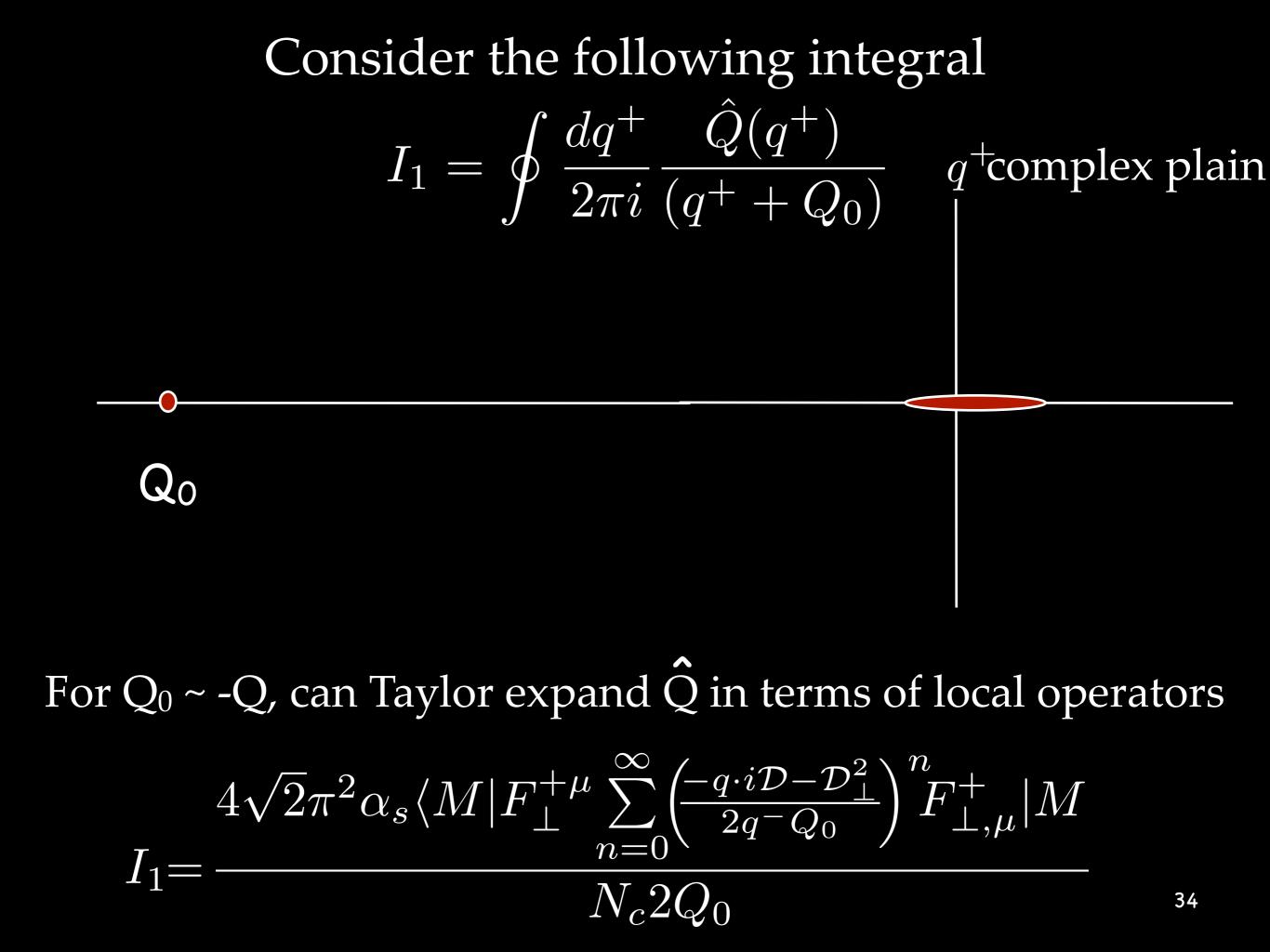
$$\hat{q} = Im(\hat{Q}) \qquad q_{_{33}}^+ \text{complex plain}$$

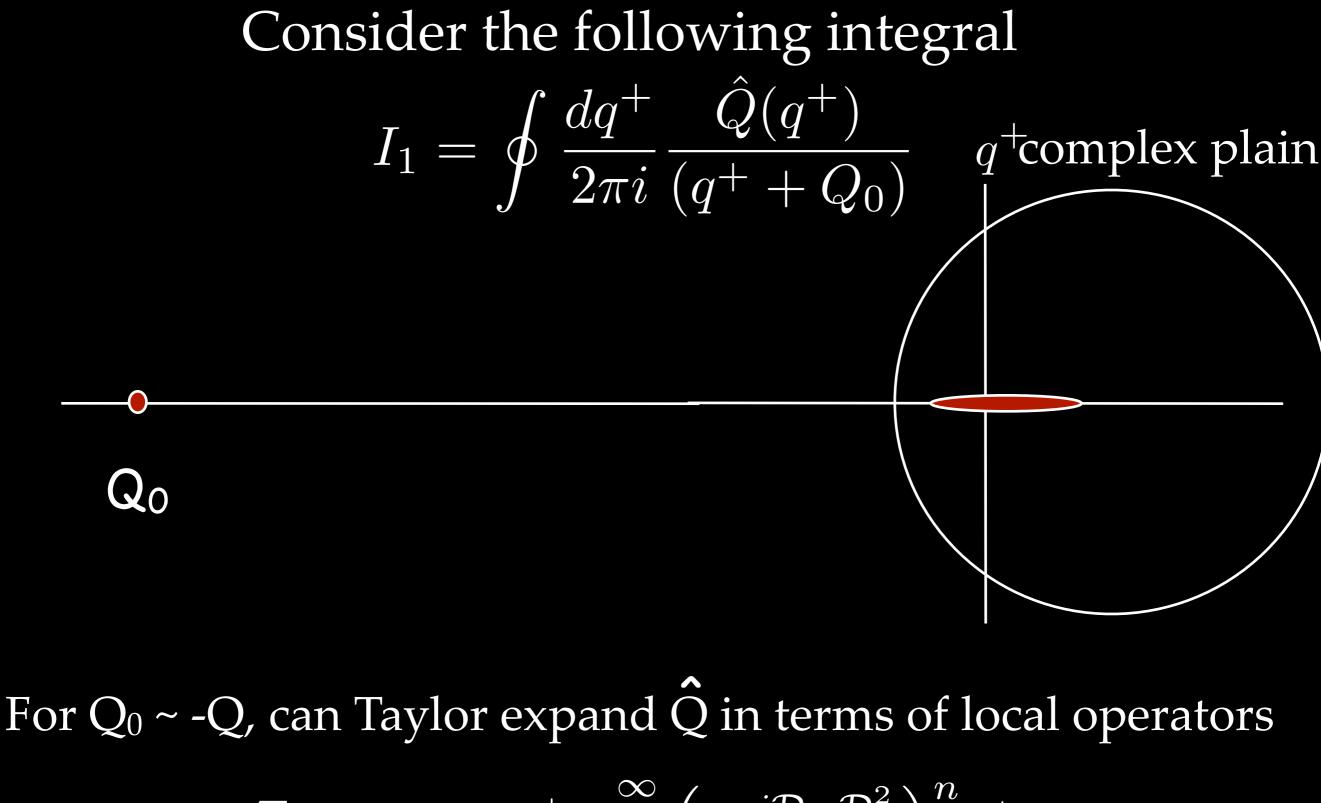
Consider a more general object

$$\begin{split} \hat{Q} &= \frac{4\pi^2 \alpha_s}{N_c} \int \frac{d^4 y d^4 k}{(2\pi)^4} e^{ik \cdot y} \frac{2(q^-)^2}{\sqrt{2}q^-} \frac{\langle M | F^{+\perp}(0) F_{\perp,}^+(y) | M \rangle}{(q+k)^2 + i\epsilon}. \\ \text{Consider } q^- \text{large } (\text{-}Q) \text{ and fixed} \\ \text{Consider } q^+ \text{to be a variable} \\ \frac{d^2 \hat{Q}}{dk_{\perp}^2} \text{ has a pole at } q^+ = \frac{k_{\perp}^2}{2q^-} \end{split}$$

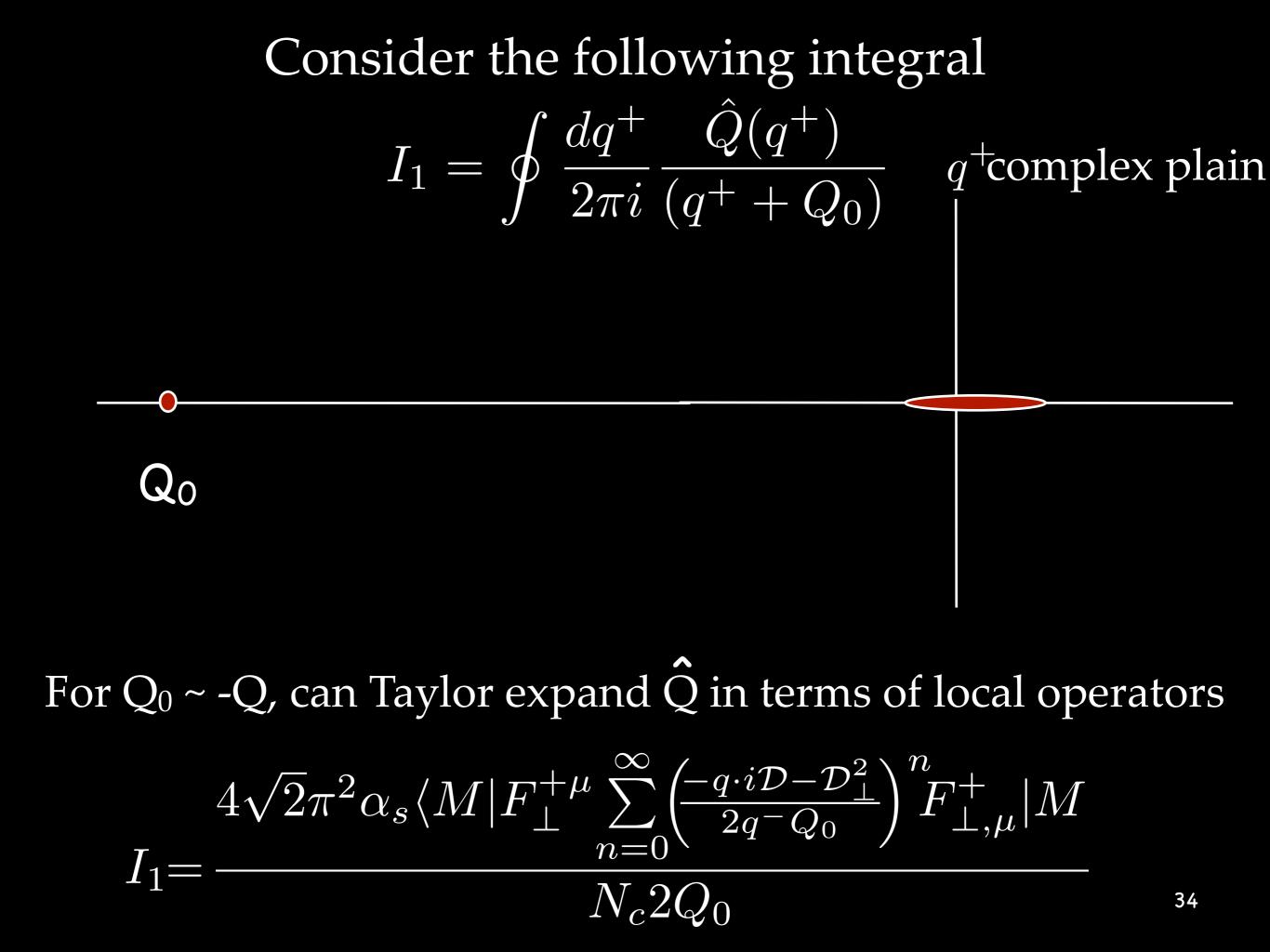
$$\hat{Q} \text{ has a branch cut on the real axis} \\ \text{ at } q^+ \sim \lambda^2 \text{ O} \\ \hat{q} = Im(\hat{Q}) \qquad q_{33}^+ \text{ complex plain} \end{split}$$

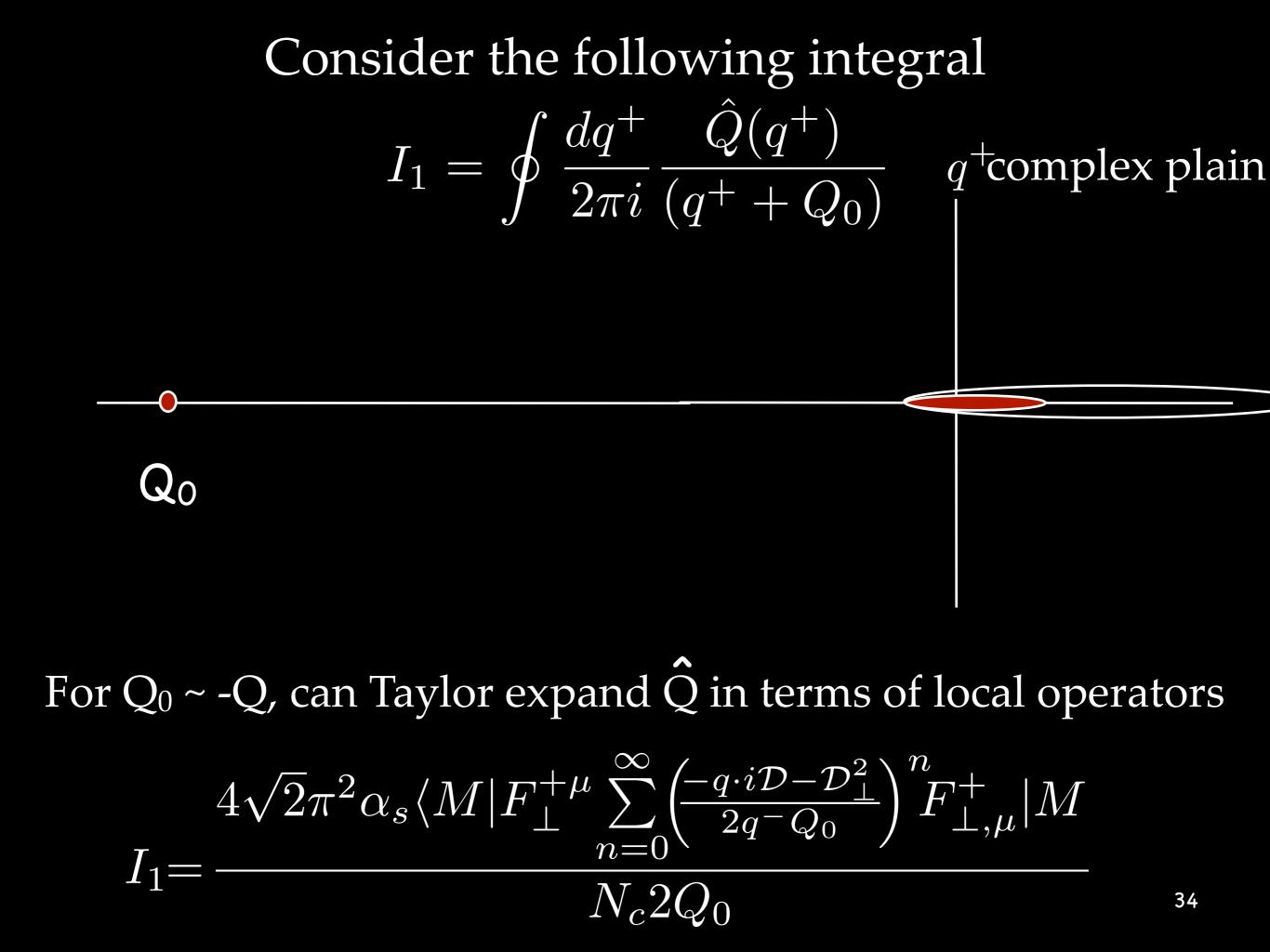






$$I_1 = \frac{4\sqrt{2}\pi^2 \alpha_s \langle M | F_{\perp}^{+\mu} \sum_{n=0}^{\infty} \left(\frac{-q \cdot i\mathcal{D} - \mathcal{D}_{\perp}^2}{2q - Q_0} \right)^n F_{\perp,\mu}^+ | M}{N_c 2Q_0}$$





Deforming the contour

$$I_{1} = \int_{-\lambda^{2}Q}^{\lambda^{2}Q} dq^{+} \frac{\hat{q}(q^{+})}{q^{+} + Q_{0}} + \int_{0}^{\infty} dq^{+}V(q^{+})$$

set Q₀ = q-

Taylor expand I₁ on the real side and do the integral

$$\hat{\bar{q}}(Q^{+})2Q^{+} = \int_{-Q^{+}}^{Q^{+}} dq^{+}\hat{q}(q^{+})$$
$$\simeq 2\hat{q}Q^{+} + \frac{\hat{q}''(Q^{+})^{3}}{3}$$

Match powers of q⁻

Easy to calculate local operators on the Lattice

Consider the unordered correlator $\mathcal{D}^{>}(t) = \sum_{n} \langle n | e^{-\beta H} \mathcal{O}_{1}(t) \mathcal{O}_{2}(0) | n \rangle$

convert thermal weight to evolution in imaginary time

$$\mathcal{D}^{>}(-i\tau) = \Delta(\tau) = \operatorname{Tr} \left| e^{-\int_{0}^{\rho} d\tau H(\tau)} \mathcal{O}_{i}(\tau) \mathcal{O}_{2}(0) \right|.$$

with time derivatives

$$\mathcal{D}^{>}(-i\tau) = i^{N_t} \Delta(\tau)$$

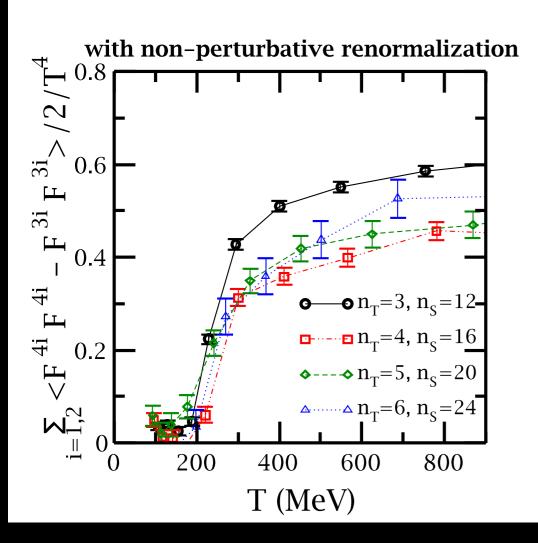
But local operators are super simple

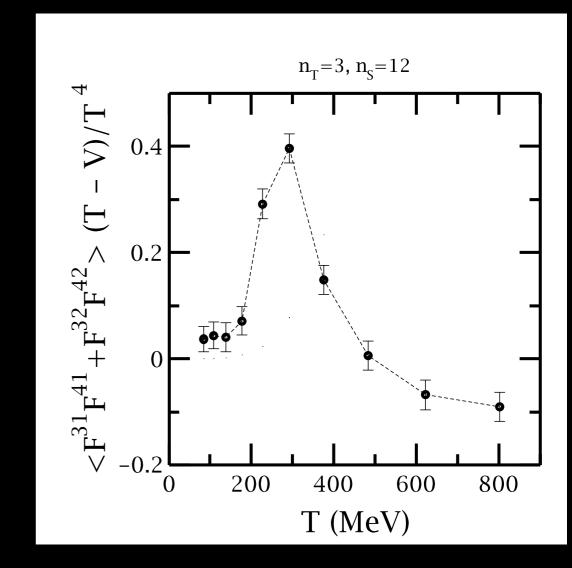
$$\mathcal{D}^{>}(t=0) = i^{N_t} \Delta(\tau=0)$$

Rotating everything to Euclidean space and calculating $x^{0} \rightarrow -ix^{4}$ and $A^{0} \rightarrow iA^{4}$ $\Rightarrow F^{0i} \rightarrow iF^{4i}$ $\hat{q} \sim F^{+i}F^{+i} + F^{+i}\frac{\mathcal{D}_{z}}{q^{-}}F^{+i}$

37

Calculate in quark less SU(2) gauge theory





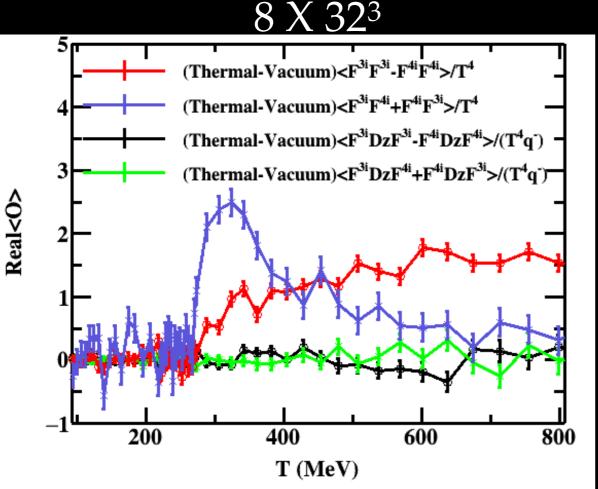
New Results in SU(3)

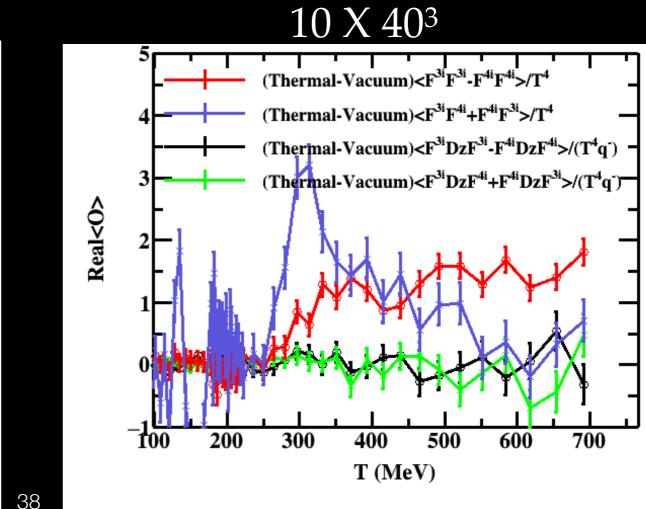
Full expansion of terms

$$\hat{q} \sim \sum_{n=0}^{n} \langle m | F^{+i} \left(c_n \frac{\mathcal{D}_z}{q^-} \right)^n F^{+i} | m \rangle$$

Similar to expansion in

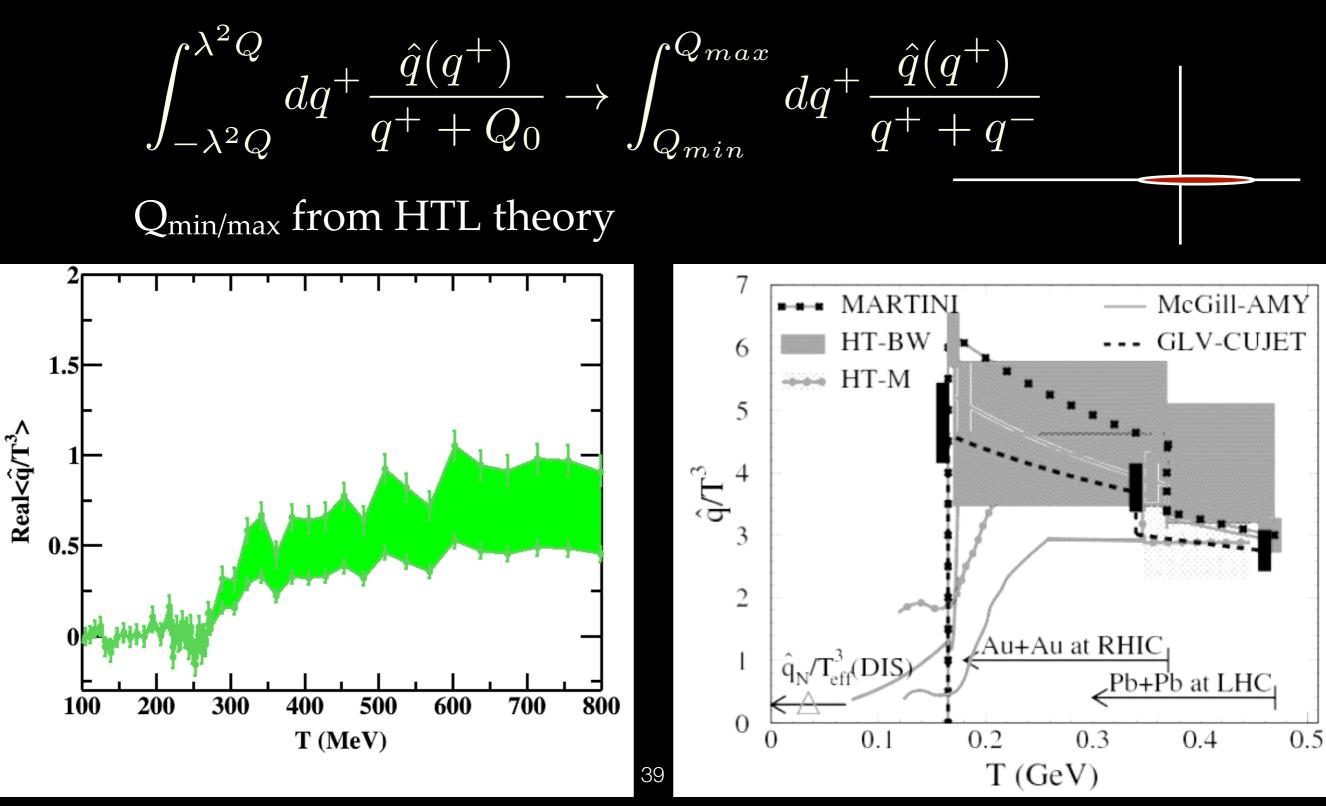
Xiangdong Ji, PRL 110, 262002 (2013)





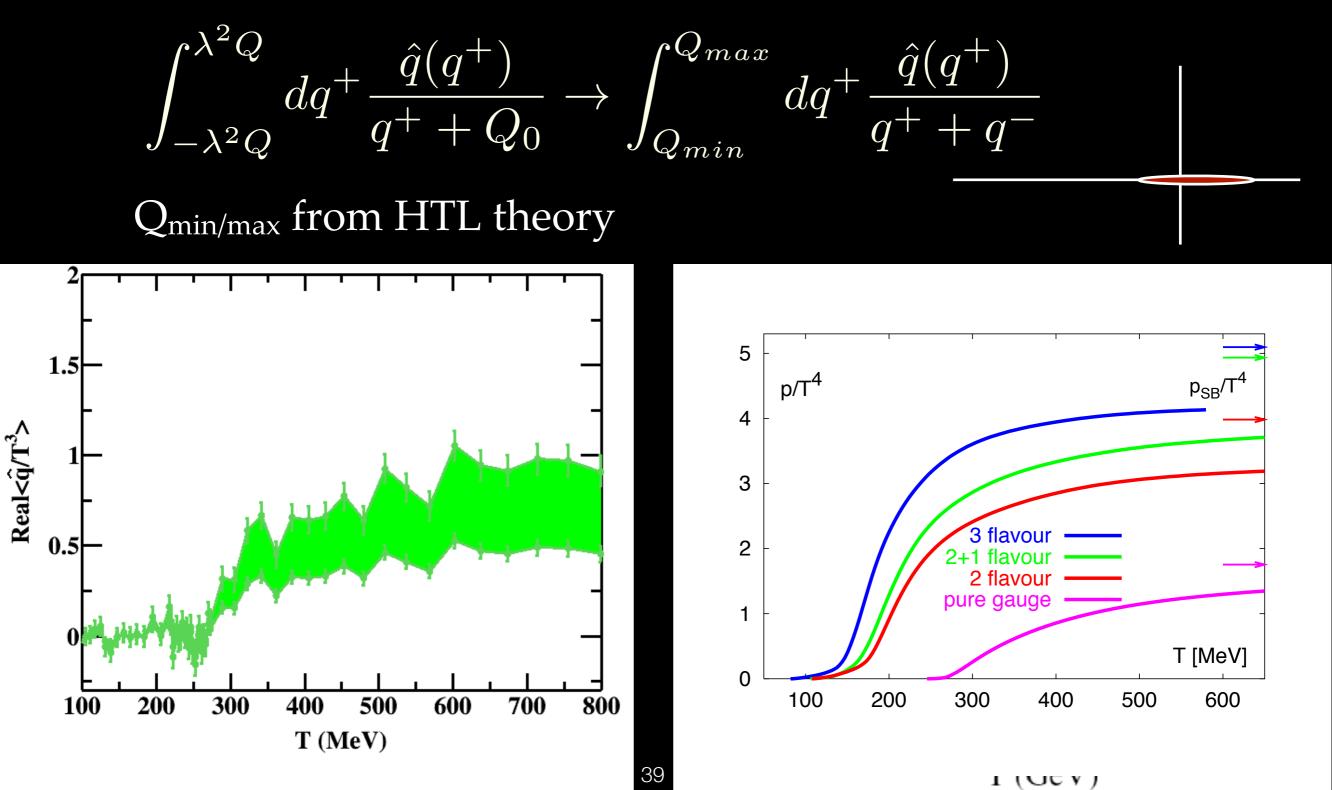
Extracting q

Systematic uncertainty from estimating the range of the thermal cut



Extracting q

Systematic uncertainty from estimating the range of the thermal cut



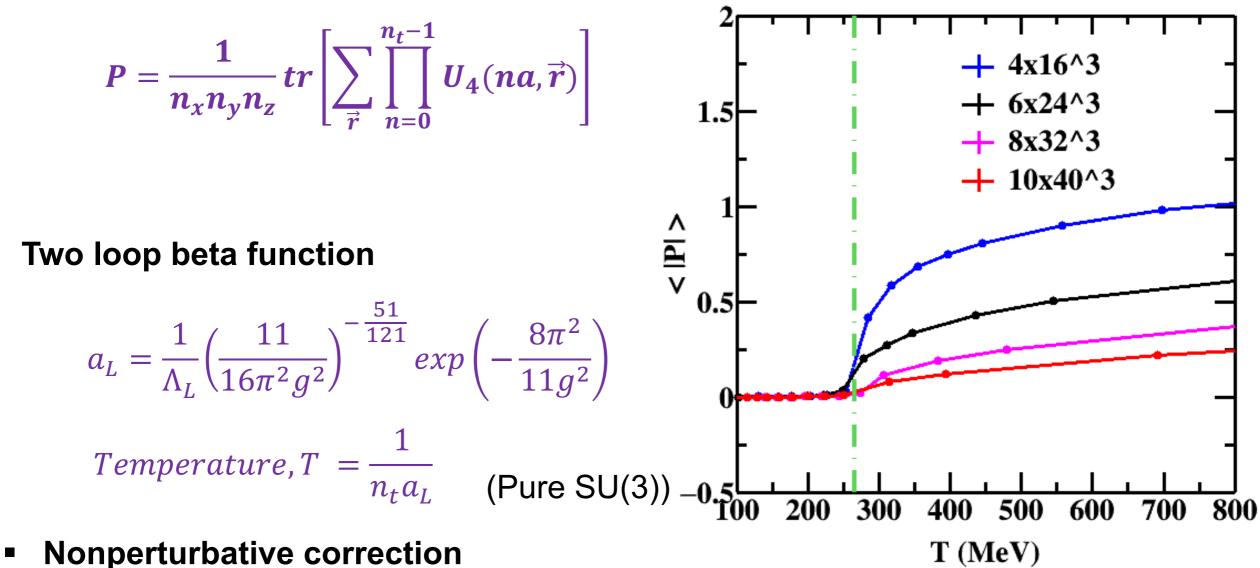
Outlook

- HPC is now almost an essential component of nuclear physics
- Large scale simulations are being set up to model the multi-scale phenomena in heavy-ion collisions
- Requires elaborate, compute intensive calibration procedure
- New methods being developed to look at jet transport coefficients from first principles.
- Preliminary results consistent with phenomenological extraction

Thank you for your attention!

Non perturbative re-normalization

Expectation value of Polyakov loop:



Tune $\frac{T_c}{\Lambda_L}$ is independent of g