Porting ATLAS Software on Summit and Future Supercomputers

"Intel is the one killing off the X86 architecture for all but the basic control of data flow"

(from "INTEL'S EXASCALE DATAFLOW ENGINE DROPS X86 AND VON NEUMANN")

- ATLAS Software can be ported to Summit by installation from source (see next slide for details)
- Advantages
 - Features trimmed to specific architecture
 - Hardware specific compiler flags adjustment
 - Maximum performance (no chipset emulation)
- Porting work continuity will help to assure that:
 - Effects on new architectures are considered in ATLAS software developments
 - ROOT, generators, LCG packages porting probed sooner
 - Validation procedures are well established

ACSC (ATLAS Comprehensive Software Compilation) – addresses software porting needs for supercomputers

First successful attempt to install ATLAS code together with externals on non-x86 architecture

ATLAS CODE

GAUDI (software architecture)

ROOT (data processing framework)

Common HEP software tools

- Emulating a different chipset can result in huge performance loss
- Solution: install code and externals from sources
 - Same GNU Linux and compiler
 - Software and Physics validation

Proposals for Summit

- ACSC production implementation
 - So far requirements gathered, design concept proven
 - Make master branch suitable for ACSC method
 - Important: make a high level decision to provide installation from sources for "key" ATLAS releases
 - Trials builds on non-x86 architectures, e.g. in OpenLab
 - Work with ROOT developers on needed tweaks for PowerPC
 - Set of scripts for automatic installation from sources
- PanDA integration with Summit
 - Initial integration done at Summitdev (e.g. adaptation of Harvester to local resource manager)
- Study of efficiency of ATLAS parallelization techniques
 (AthenaMT) on Summit architecture

