BOINC: Present and Future Resources

David Cameron ADC mini-TIM, 1 October 2018

Measuring the performance

- Wallclock is not so accurate since jobs can be suspended/resumed
- CPU time is measured accurately, but power of processors varies a lot
- Average efficiency (cpu/wall) is 73% compared to 84% for all simulation
- We calculated average HEPSPEC06 to be 10
 - Based on event processing time for one task on a host with known HEPSPEC and average time over all BOINC
- Running slots is a "best guess" since we never know if jobs are actually running once they are sent out
 - Averages ~10k recently

Recent performance - CPU Consumption

CPU days/day March - September 2018 On average 2.5% of entire ATLAS CPU

Recent performance - Events Processed

Events processed per month 2014 - now

Events processed per day March - September 2018
On average 4.5% of all simulation
627M events Oct 17 - Oct 18

Future prospects

- Traditional volunteer base (@home) is stable but not significantly increasing
- Recent increase in resources is mainly from spare CERN machines and grid backfilling

- Grid backfilling can increase CPU consumption of a site up to 25%
- For dedicated ATLAS sites with memory to spare should be a no-brainer to install
- ADC service machines? (5000 cores)

TRIUMF CPU time for Grid and BOINC

Issues to work on

- Accounting for Grid backfilling
- Non-dedicated tasks
 - o BOINC is manually assigned tasks (thanks to David South for keeping it continuously full!)
 - Only difference from normal grid jobs is we would like fewer events per job (currently 200)
 - o If panda supported dynamic job sizes based on desired no of events or walltime we could run any simulation
- Running normal simul jobs (1000-event, non-dedicated) on dedicated resources, eg CERN spare machines
- Job types
 - Simulation is good for volunteers and backfilling
 - Evgen could be nice for volunteers too (less demanding on disk and memory)
 - Maybe other workloads could run on dedicated machines
- Event service
 - A prototype implementation was designed and tested, built around not giving credentials to volunteers
 - Still too many bleeding-edge technologies to deploy in production
 - Dynafed, pandaproxy, event service itself
 - No real gain expected in terms of throughput BOINC itself handles preemption well
 - But maybe "normal" ES jobs could run on trusted resources like grid backfill

Backup

References

- https://lhcathome.cern.ch/lhcathome/
- Installing BOINC on grid nodes: <u>https://twiki.cern.ch/twiki/bin/view/AtlasComputing/RunningATLASAtHomeOnA</u> <u>Cluster</u>
- CHEP talk on grid backfilling: https://indico.cern.ch/event/587955/contributions/2937192/
- Kibana dashboard for grid sites (requires login)

Event service implementation in ATLAS@Home

