
Yoda Technical Details
and Current State

J. Taylor Childers (Argonne)

https://github.com/PanDAWMS/panda-yoda

https://github.com/PanDAWMS/panda-yoda

Oct 2018 ATLAS S&C Week J. Taylor Childers

yoda_droid

Rank 1

Yoda

!2

Rank 0
Yoda

Work
Manager

Droid

JobComm

Rank N
Droid

JobComm

Harvester

MPIService MPIServiceMPIService

File Manager …

Transform
Manager

Transform
Manager

MPI CommunicationQueue messageShared File System

Oct 2018 ATLAS S&C Week J. Taylor Childers

Yoda

!3

Work Manager

Harvester

DroidFile Manager MPIService

Request Job

Request Event
Ranges

Shared File System MPI CommunicationQueue message

-Processing Requests
-Caching Requests 
-Trigger Requests to
 Harvester
-Send Jobs, Event
 Ranges to Droids

Oct 2018 ATLAS S&C Week J. Taylor Childers

Yoda Module Design Details

!4

‣ Yoda-Droid is a server/client model, meaning Droids make requests to Yoda and
Yoda fulfills those request.
• The reason for this choice is to avoid needing a database for tracking the current state of each

Droid.
• Since our processing rate is on the scale of minutes per event, we don’t expect Yoda to be

deluged by incoming requests.
‣ Yoda launches the WorkManager, which processes all the incoming messages

from Droids and triggers the requests from jobs or event ranges from Harvester.
‣ The Harvester interaction is treated as a plugin, currently using shared file system

for communication, but could move to communication model.
• Shared File System communication in this case is small and since only Rank 0 (Yoda) is

writing/reading it is not a bottleneck.
• However, it does create race conditions.
• Should move to communication where possible, just need to implement the plugins for

Harvester & Yoda.
‣ Yoda can be given an wall-clock time limit. It will run for the specified number of

minutes, then kill all AthenaMP processes and exit cleanly.
• Needed for supporting running AthenaMP in temporary storage locations.
• Athena logs must be saved for posterity.

‣ Yoda launches a FileManager process that receives details from Droid ranks on
files produced, which are then communicated to Harvester for stage out.

Oct 2018 ATLAS S&C Week J. Taylor Childers

Note about MPIService Module

!5

‣ All MPI traffic is handled in the MPIService
‣ This was driven because I have seen unpredictable behavior when MPI was

spread out among Python Threads and Processes.
‣ Therefore all subprocesses use multiprocessing.Queue objects to

communicate.
‣ Messages are always in the form of a pickled python dictionary.

Oct 2018 ATLAS S&C Week J. Taylor Childers

Droid

!6

JobComm

Payload
Messenger

MPIService

TransformManager

AthenaMP
subprocess

Yoda

 YAMPL MPI CommunicationQueue message

-Request Event Ranges -Monitor AthenaMP

-Request Athena Job
-Monitor JobComm & TransformManager

Oct 2018 ATLAS S&C Week J. Taylor Childers

Droid Module Design Details

!7

‣ Droid sends a request to Yoda for a Panda Job definition, after which it launches a
TransformManager sub-process which runs AthenaMP on the local node, in or out
of a container as needed.
• Containers are important for scaling the Atlas Software.
• Provide a 7x speed-up when performing many meta-data operations.

Spencer Williams
ANL Summer Student

Oct 2018 ATLAS S&C Week J. Taylor Childers

Droid Module Design Details

!8

‣ Droid sends a request to Yoda for a Panda Job definition, after which it launches a
TransformManager sub-process which runs AthenaMP on the local node, in or out
of a container as needed.
• Containers are important for scaling the Atlas Software.
• Provide a 7x speed-up when performing many meta-data operations.

‣ TransformManger simply monitors the AthenaMP process to ensure it is alive.
• There is a lot to configure here, see slide on TransformManger

‣ Once a job has begun, Droid launches the JobComm sub-process which handles
the YAMPL communication with the AthenaMP workers, thus providing work.

‣ JobComm manages the event ranges received from Yoda
• sending requests to Yoda when more are needed
• responding to AthenaMP workers with event ranges when requested
• forwarding output file information to Yoda from AthenaMP workers

Oct 2018 ATLAS S&C Week J. Taylor Childers

TransformManager Module
‣ Example for Singularity submission is here.
‣ Entries from PandaJob dictionary formatted into this

template to fill things
‣ Using this template (following Harvester’s example)

enables local sites to configure their runtime
environment.
• Notice the DB settings.

‣ Current templates can be a bit Sim focused and will
need to be made more flexible as we include more
workflows, Gen/Reco.

‣ Or provide a way to change the template based on
transforms.

‣ This assumes Event Service would be ported to other
transforms.

!9

https://github.com/PanDAWMS/panda-yoda/blob/master/templates/ThetaSubmitSingularity.sh

Oct 2018 ATLAS S&C Week J. Taylor Childers

TransformManager Module
‣ When running on temp file systems, like RAM-disk or

node-local SSDs, Yoda must clean up and stage out log
files.

‣ To achieve this the user specifies the run path for the
AthenaMP application.

‣ For instance, RAM-disk on Theta is ‘/tmp’
‣ The user also specifies BASH Globbing strings to

specify which logs to target.
‣ For instance,  

“log.EVNTtoHITS,athenaMP-workers-*/*/AthenaMP.log”

!10

https://github.com/PanDAWMS/panda-yoda/blob/master/pandayoda/droid/TransformManager.py

Oct 2018 ATLAS S&C Week J. Taylor Childers

TransformManager Module
‣ Sites sometimes need local modifications to the

PandaJob dictionary in order to operate properly
‣ For instance, the Titan operators needed to remove a

portion of the Athena command line options to get the
database to work properly.

‣ Job mod is a plugin which takes the PandaJob
dictionary, can modify it, and return the modified
version for Yoda to run.

!11

https://github.com/PanDAWMS/panda-yoda/blob/master/pandayoda/droid/TransformManager.py

https://github.com/PanDAWMS/panda-yoda/blob/master/pandayoda/yoda_template.cfg

Oct 2018 ATLAS S&C Week J. Taylor Childers

TransformManager Module
‣ Sites sometimes need local modifications to the

PandaJob dictionary in order to operate properly
‣ For instance, the Titan operators needed to remove a

portion of the Athena command line options to get the
database to work properly.

‣ Job mod is a plugin which takes the PandaJob
dictionary, can modify it, and return the modified
version for Yoda to run.

!12

https://github.com/PanDAWMS/panda-yoda/blob/master/pandayoda/droid/TransformManager.py

https://github.com/PanDAWMS/panda-yoda/blob/master/pandayoda/yoda_template.cfg

Oct 2018 ATLAS S&C Week J. Taylor Childers

Custom Python Multiprocessing Module
‣ After investigating some ‘bug’ reports from Wen, I found

that while the Python version inside the ATLAS
environment claims to be 2.7 it contains some modules
from 2.6 which are very different in implementation.

‣ To cope with this, I wrote the yoda_multiprocessing
module to obfuscate this difference.

‣ Must set environment variable RUN_YODA_IN_ATHENA
to get this custom module.

‣ Otherwise it is just a pass through for all standard
‣ Ideally somewhere down the road we can delete this and

only use standard Python releases

!13

https://github.com/PanDAWMS/panda-yoda/blob/master/pandayoda/common/yoda_multiprocessing.py

Oct 2018 ATLAS S&C Week J. Taylor Childers

Deployment instructions
‣ Instructions are on the github, people

should send me their notes if there are
hints for specific cases where the install
needs to change.

‣ Typically I recommend installing inside
a Python virtualenv.

!14

https://github.com/PanDAWMS/panda-yoda

Oct 2018 ATLAS S&C Week J. Taylor Childers

Deployment instructions
‣ Instructions are on the github, people

should send me their notes if there are
hints for specific cases where the install
needs to change.

‣ Typically I recommend installing inside
a Python virtualenv.

‣ Build Cython, mpi4py, yampl, and
python-yampl inside environment

‣ pip install yoda

!15

https://github.com/PanDAWMS/panda-yoda

Oct 2018 ATLAS S&C Week J. Taylor Childers

Deployment instructions
‣ Configuration includes a configuration

file with many settings, all documented
in the README.md

‣ configuration is divided by python
module configparser

‣ many things can be tuned, how many
events Yoda should request from
Harvester, or Droid from Yoda.

‣ log filenames, template names, log
levels… and so on.

!16

https://github.com/PanDAWMS/panda-yoda

Oct 2018 ATLAS S&C Week J. Taylor Childers

Deployment instructions
‣ Yoda should not require any coding

unless you need custom ‘jobmods’
‣ Otherwise, the template run script for

AthenaMP is the major piece.

!17

https://github.com/PanDAWMS/panda-yoda

Oct 2018 ATLAS S&C Week J. Taylor Childers

Performance on Theta

‣ Yoda has been running continuously since about
May on Theta with Harvester.

‣ I have run scaling test of Yoda (outside of
Harvester) up to 1024 nodes of Theta with very
good performance inside a container.

‣ Grafana Link

!18

https://monit-grafana.cern.ch/d/000000696/atlas-job-accounting-historical-data?orgId=17&from=now-6M&to=now&var-groupby=resourcesreporting&var-site=ANLASC&var-cloud=All&var-country=All&var-federation=All&var-jobtype=All&var-resourceserporting=All&var-cores=All&var-resources=All&var-groups=All&var-inputdatatypes=All&var-eventservice=All&var-inputprojects=All&var-outputproject=All&var-bin=1d&var-measurement_suffix=1d&var-retention_policy=long

Oct 2018 ATLAS S&C Week J. Taylor Childers

Performance on Theta/NERSC
‣ One additional Study: with/without running AthenaMP work

directory in RAM-disk
‣ No difference in runtime.  

Implies we are not limited by IO at this time.
‣ So are we limited by Memory? AthenaMP uses ~ 1.5GB +

0.25GB * (# AthenaMP workers)
‣ KNL has 16GB high bandwidth memory (MCDRAM) which

has 4x the bandwidth as the 192GB DDR.
‣ Can run using 16GB in ‘L3-cache’ mode. If we are cache

limited, reducing number of workers to fit AthenaMP inside
16GB (so < 32 workers) we should see improved performance.

‣ However, we do not see a big improvement at that step. So
that is not a problem.

‣ Most likely remaining issue is L1/2 cache thrashing. Each
worker requires different codes at any given time, therefore we
never keep the same code in L1 cache for very long.

‣ Breaking up our event processing into smaller pieces may help
us gain some performance by ensuring we limit the amount of
code loaded on a CPU at any given time.

!19

1 AthenaMP on 1 Node

2 AthenaMP
on 1 Node

3 AthenaMP
on 1 Node

4 AthenaMP
on 1 Node

All 128-node jobs

Oct 2018 ATLAS S&C Week J. Taylor Childers

To Dos:
‣ Move from shared_file_messenger to

communication layer for Harvester interaction.
• more reliable, less race conditions

‣ More testing of ‘run elsewhere’ functionality to ensure
it is generalized.

‣ Check Python 3 compatibility

!20

