Work Plan

Work Package #1 (leader RTU): Project management, Coordination and Communication

Partner	Responsibility / Task	Ex	pected outcome
RTU	1.1. Overall project coordination and	2.	Project kick-off meeting during ARIES annual meeting in
	management. Monitoring activities		Riga – May 2018
	- ensuring that partners are timely	3.	Quarterly coordination meetings via Vidyo platform
	following their responsibilities and	4.	Mid-term review meeting during 2 nd ARIES annual
	verification of effective use of the		meeting in 2019
	received funding	5.	Project closing meeting in 2020
RTU	1.2. Coordination and Communication	1.	Relevant stakeholders (e.g. shipping companies, Class
	with relevant stakeholders		Societies, engine manufacturers, European Commission,
			EMSA, IMA, Interatnko; "Scrubbers" Group; Bimco) are
			directly informed about the project and its results – at
			least during or following the above mentioned meetings
RTU	1.3. Final project report	1.	At the end of the project final report is compiled and
+ all			made available to the relevant stakeholders

Work Package #2 (leader RTU): Integration of the e-beam accelerator into the marine diesel engine exhaust flow system - in the simulated ship environment

Partner	Responsibility / Task	Ex	pected outcome
RKB	2.1. To provide with marine diesel	1.	Functioning marine diesel engine is made available at the
	engine (in-kind contribution)		Riga Ship yard (e.g. on dry-dock or shore facilities).
		2.	Adequate marine fuel (e.g. heavy fuel) is provided.
ebeam	2.2. To provide with electron	1.	Appropriate accelerator and all supporting systems are
	accelerator (in-kind contribution)		made available and are delivered to the Riga Ship yard
RTU	2.3. Mechanical and electrical design	1.	Design and drawings of the process vessel is provided to
INCT	as well as technical integration of		RTU and RKB based on the inputs received form the
FEP	the process vessel with an		Partners
ebeam	accelerator provided	2.	Design of the exhaust gas cooling elements is provided to
RKB	2.4. Design of the exhaust gas cooling		RTU and RKB based on the inputs received form the
CERN	elements based on the operational		Partners
Remon-	conditions	3.	Design and integration of the control and monitoring
towa	2.5. Design and integration of the		devices is provided to RTU and RKB based on the inputs
UH	control and monitoring devices		received form the Partners
INCT	2.6. Different materials resistant for	1.	The most appropriate material and design is identified for
FEP	corrosion used for accelerator		accelerator windows and air curtain
ebeam	windows and air curtain for		
CERN	protection accelerator window to		
UH	be studied		
RTU	2.7. Production and manufacturing of	1.	All components are manufactured and assembled on the
RKB	the process vessel, along with		engine
Remon-	integration, supporting and control	2.	Accelerator is installed on the process vessel
towa	elements	3.	Accelerator windows and curtains are installed
INCT FEP		4.	Electrical and control elements are installed
CERN			
UH			
INCT	2.8. Installation of the flue gas	1.	Measuring devices are provided and installed on the
RTU	measuring devices		prototype
UH			
All	2.9. Assembly and testing of all the	1.	Prototype is made ready for the tests
	components		

Work Package #3 (leader INCT): Investigation of flue gas flow pattern and process parameter influencing on the removal efficiency of NOx and SO2 using computer simulation

Partner	Responsibility / Task	Expected outcome
INCT	3.1. CFD (computer fluid dynamics) computer simulation will be used to model the gas flow dynamic inside the process vessel.	 Process parameters, experimental - such as gas temperature, flow rate, droplet size, L/G ratio of droplet; based on modeling - process vessel dimension influence on removal efficiency of SO2 and NOx are investigated using MATLAB and KINETIC. Relevant reports are provided in the form of the scientific papers
UH FEP	3.2. Dosimetry — analysis of the electron penetration and distribution in the process vessel by using Mote-Carlo simulations	 Relevant analysis is made available and reports are provided in the form of the scientific papers The system on ship operational safety conditions are evaluated.

Work Package #4 (leader INCT): Experimental measurements

Partner	Responsibility / Task	Expected outcome	
INCT	4.1. Experimental measurements and	1. Output parameters like: temperature, flow velocity and gas	
RTU	data recording regarding	mixing, window conditions etc are measured and data are	
FEP	continuous testing of integrated	recorded	
UH	system with the diesel real off		
CERN	gases flow		
INCT	3.3. Analysis of the experimental	1. Relevant analysis is made available and along with the	
RTU	results	conclusions are provided for the final project report	

Work Package #5 (leader BIOPOLINEX): Economic analysis

	WORK Tackage #3 (leader blot Octivery). Economic analysis		
Partner	Responsibility / Task	Expected outcome	
BIOPOLINEX	5.1. To conduct a comprehensive	1. Relevant analysis and report is made available to the	
	business / economic / financial	Consortium	
	analysis from the point		
	of view of the end user of the		
	technology / installation		
BIOPOLINEX	5.2. To conduct a business / economic	1. Relevant analysis and report is made available to the	
	/ financial analysis from the point	Consortium	
	of view of the plant manufacturer		
BIOPOLINEX	5.3. To assess the investment	1. Relevant analysis and report is made available to the	
	profitability based on discounted	Consortium	
	cash flows,		
	NPV, IRR ratio as well as the		
	payback period.		
	5.4. To calculate the break-even point		
	for key financial parameters and		
	to conduct the sensitivity analysis.		