ACTAR TPC
Nuclear structure through transfer reactions

Past: structure of nuclei close to stability in direct kinematics, use of magnetic spectrograph

- Good resolution (few keV)
- High beam intensity
- Stuck with stable isotopes from which a target can be made

J.E. Spencer and H.A. Enge, NIM 49, 181 (1967)
Now: structure of exotic nuclei in inverse kinematics

- Study of nuclei with short half-life
- Low beam intensity
- Resolution strongly depends on target thickness

J.S. Thomas et al., PRC 71, 012302 (2005)

Detector(s)

\[{}^{29}\text{Si} \rightarrow {}^{28}\text{Si} + p \]

\[{}^{83}\text{Ge} \rightarrow {}^{82}\text{Ge} + p \]

100 keV FWHM
80 \(\mu \)g/cm\(^2\)

J.C. Lighthall et al., NIM A 622, 97 (2010)

300 keV FWHM
430 \(\mu \)g/cm\(^2\)

J.S. Thomas et al., PRC 71, 012302 (2005)

Need thick targets and excellent resolution
Now: ACTIVE TARGETS

- Study of nuclei with short half-life, produced with small intensity
- Use of thick target without loss of resolution
- Detection of very low energy recoils

Active target: (Gaseous) detector in which the atoms of the gas are used as a target
Gas-filled active target and time projection chamber
- Gas = detector AND target
- Vertexing = resolution similar to thin solid target
- High effective thickness = up to 10^3 higher

Major advantages over conventional approaches
- Detection efficiency close to 4π
- Detection of low energy recoils (that stop inside the target)
- Event-by-event 3D reconstruction
- Compact, portable and versatile detector

Physics programs
- Resonant scattering
- Inelastic scattering and giant resonances
- Transfer reactions
- Rare and exotic decays ($2p$, $\beta 2p$, …)
- Transfer-induced fission, …

Detection challenge:
- Choice of the gas driven by the physics case
- High detection dynamics (up to 1000)
ACTAR TPC : Design

- Drift region
- Amplification region
- Segmented pad plane
- Electronics
- Auxiliary detectors
Drift region: principle

- Particles ionize the gas along their trajectories
- Ionization electrons drift to pad plane under a homogeneous electric field
- Transparent to particles on 4 sides
 → Wire field cage
- Homogeneous vertical drift electric field
 → Double wire field cage: 2 mm pitch (outside), 1 mm pitch (inside)
 → Optical transparency = 98 %
Drift region

Amplification region: principle
- Micro Pattern Gaseous Detectors: bulk micromegas (CERN PCB workshop)
- Operate at \(P = 75 \text{ mbar} - 1 \text{ bar} \): gap = 220 \(\mu \text{m} \). Homogeneity measured with \(^{55}\text{Fe}\) source scan
- Local gain reduction via pad polarization: detection dynamic range > 300

\[T. \text{Roger et al.}, \text{NIM A}895, \text{126 (2018)} \]

\[B. \text{Mauss et al.}, \text{EPJ Web Conference 174, 01010 (2018)} \]
ACTAR TPC : Design

✓ Drift region
✓ Amplification region: principle
✓ Segmented pad plane
 • Micromegas (CERN PCB WS) → transverse multiplicity ≈ electron straggling: 2x2 mm² pads
 • 16384 pads with very high density: connectics challenge!
 • + pad plane makes the vacuum / atmosphere interface

Multi-layer PCB routing solution :
P. Gangnant/M. Blaizot-GANIL
JST Connectors, 0.5 mm pitch

FAKIR solution : J. Pibernat-CENBG

J. Giovinazzo et al., NIM A892, 114 (2018)
ACTAR TPC : Design

✓ Drift region
✓ Amplification region: principle
✓ Segmented pad plane

Multi-layer PCB routing solution : P. Gangnant/M. Blaizot-GANIL
✓ nominal sparking voltage
✓ no leak
✗ 5 % pads grounded (PCB problem)

FAKIR solution : J. Pibernat-CENBG
✓ 100 % pads OK
✗ air leaks detected, problems with 3M connectors soldering (need vacuum soldering)
✗ sparking voltage too low

Courtesy J. Giovinazzo

Courtesy O. Pizzirusso
ACTAR TPC: Design

- Drift region
- Amplification region: principle
- Segmented pad plane
- Electronics
 - Very front end sparking protection circuit: ZAP boards, kapton flex circuit
 - Pads equipped with GET electronics:
 - 512 samples ADC readout depth x 16384 pads = volume sampling in 8 Mega voxels
 - adjustable gain, peaking time, individual trigger: pad per pad

E.C. Pollacco et al., NIM A887, 81 (2018) - design
J. Giovinazzo et al., NIM A840, 15 (2016) - analysis
ACTAR TPC : Design

$^{18}\text{O} (\text{beam}) + ^{12}\text{C} (\text{iC}_4\text{H}_{10} \text{ target gas})$
ACTAR TPC : Design

✓ Drift region
✓ Amplification region: principle
✓ Segmented pad plane
✓ Electronics
✓ Auxiliary detectors
 • Configurable flange design
ACTAR TPC : Design
✓ Commissioning of the 128x128 pad full detector

18O(p,p) and 18O(p,\(\alpha\)) excitation functions: → 3.2\(A\) MeV 18O beam in 100 mbar iC$_4$H$_{10}$

✓ Resolution in c.m. energy determination: 38 keV (FWHM): dominated by the angular straggling of the ions

✓ 20 kHz beam

✓ Detection dynamics > 100

B. Mauss, et al., submitted to NIM A
ACTAR TPC : First experiments

✓ Study of the Giant Monopole Resonance in the Ni chain (April 2019)

\[^{58,68}\text{Ni}(\alpha,\alpha') \rightarrow 49A\text{ MeV}^{58,68}\text{Ni} \text{ beams in } 400\text{ mbar He(98%) + CF}_4(2%)\]

- Helium gas
- 50 kHz beam
- Observation of 200 keV \(\alpha\)

Courtesy B. Mauss & M. Vandebruuck
Proton-decay branches from the 10^+ isomer in ^{54}Ni (May 2019)

^{54}Ni implantation – proton decay: $\rightarrow 10\,\text{MeV}^\ast\text{Ni beam in 900 mbar Ar(95\%) + CF}_4(5\%)$

- Implantation of fragmentation beam
- Simultaneous observation of Ni track ($6\,\text{MeV/pad}$) and proton tracks ($60\,\text{keV/pad}$)
Conclusion

✓ ACTAR TPC is a versatile and portable device for nuclear physics studies
 → can be operated with a large variety of gases and a large range of pressure

✓ Few problems identified on the pad plane
 → technical solutions exist (for both multi layer PCB & FAKIR solutions)
 and will be applied in the near future

✓ The detector was successfully commissioned and was used for 2 nuclear physics experiments this year

✓ It will be upgraded to extend its capabilities (use of higher intensity beams, detection of electrons, ...)

The research leading to these results have received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013)/ERC grant agreement no. 335593.