Tribute to Anton Oed

Anton's Pre-MicroStripGasCounter-History

at the Institut Laue Langevin

Peter Geltenbort
Institut Laue Langevin (ILL), Grenoble, France

with special thanks to

Friedrich Gönnenwein and late Anton Oed
without their long lasting support, advice and friendship I wouldn't be here
Anton Oed was born 1933 in Ulm

He studied Physics in Tübingen

For his diploma thesis on “The double resonance spectrum of ^{23}Na” he received the prize of the Mathematic-Natural Scientific Faculty of the University in Tübingen

In his doctoral thesis, again in atomic physics, he studied “The double quanta decay of the 2s level of hydrogen”

In September 1979 detached from the Physical Institute of the University of Tübingen, Germany, to the Institut Laue-Langevin (ILL) in Grenoble, France, to develop the detectors for the fission fragment spectrometer “Così fan tutte”
Institut Laue-Langevin (ILL)

“A neutron factory and an user facility”

founded 17 January 1967
International Convention (renewal every 10 years)
signed until end 2023
first neutrons in 1971
cold and hot neutrons sources started operation in 1972

Associates: France, Germany, United Kingdom
Scientific Member Countries: E, CH, I, A, CZ, SK, B, S, DK, PL
covers about 93% of European neutron users

Fields of research
solid-state physics, material science, chemistry, bio- and earth sciences, engineering,
nuclear and particle (fundamental) physics

Very Hot (Fission) Neutrons

Ultra-Cold Neutrons

10^7 eV

10^{-7} eV

Experimental Programme in 2018
- 821 experiments (allocated by subcommittees) on 28 ILL-funded and 10 CRG instruments
- 1600 visitors coming from 41 countries
- 570 publications by ILL staff and users

~515 staff; ~103 M€ annual budget

H. Maier-Leibnitz
L. Neel

Very Hot (Fission) Neutrons
Institut Laue-Langevin (ILL) operates the most intense (reactor) neutron source in the world, feeding a suite of 40 high-performance instruments.

European Synchrotron Radiation Facility (ESRF) is a world-leading synchrotron radiation source hosting 41 cutting-edge experimental stations.

The Institut de Biologie Structurale (IBS) is a research centre in structural biology. The IBS possesses cutting edge facilities and is a partnership between CEA, CNRS and UJF.

European Molecular Biology Laboratory (EMBL) Grenoble is an outstation of the EMBL organisation (HQ in Heidelberg), specialising in research in structural biology (in very close proximity to the ILL and the ESRF).
The fission fragment separator “Lohengrin”

U. Koester, Y.-H. Kim, N. Laurens

Mass-separated fission fragments, up to 10^5 per second, $T_{1/2} \geq \mu$s

- n-flux 5.5×10^{14} cm$^{-2}$/s
- Few mg fission target (various materials)
- Several 10^{12} fissions/s

Applications:
- Exotic, neutron-rich nuclides (production, decays, magnetic moments, r-process)
- Fission yields

Typical duration of experiments: one to three weeks

\[m \frac{v^2}{r_{el}} = qE \]
\[E_{kin} / q = E / 2 \, r_{el} \]
\[m \frac{v^2}{r_{magn}} = qvB \]
\[m \frac{v}{q} = B \, r_{magn} \]

Cosi fan tutte

Coincidence spectroscopy in fission alphas and neutrons taking up to three events

G. Siegert, ILL Internal Scientific Report 78SI321S (December 1978)
"Cosi fan tutte" is a fission fragment spectrometer measuring simultaneously the velocity \(v \) and the kinetic energy \(E \) of both fragments from a fissile target under thermal neutron bombardment and enables the individual fragment mass to be determined after prompt neutron emission. The use of coaxial timing detectors (based on the detection of electrons ejected from a thin foil after the passage of fragments) and axial ionisation chambers of high resolving power leads to a mass resolution \(m/\Delta m = 170 \) for \(m \approx 95 \) amu. Upon applying mass and momentum conservation the primary masses can be calculated. A special technique allows the identification of nuclear charges.

Cosi fan tutte (PN8) set-up

\[E = \frac{1}{2}mv^2 \]
A FAST BEAM COAXIAL TIME PICKOFF SYSTEM

A. OED, G. BARREAU, F. GÖNNENWEIN, P. PERRIN, C. RISTORI *
Institut Laue–Langevin, 38042 Grenoble Cédex, France
and
P. GELTENBORT
Physik. Institut der Universität Tübingen, Morgenstelle, D-7400 Tübingen, FRG

Received 1 August 1980

A new time pickoff system for particle beams with an area of 78 mm² and a transmission of 99.8% is described. In a time-offlight spectrometer using two of these pickoff systems an instrumental time resolution of 95 ps for fission fragments with 100% detection probability and a time resolution of 130 ps for α-particles with 35% detection probability have been measured.

![Diagram of the beam coaxial time pickoff system.](image)

Fig. 1. Sectional view of the beam coaxial time pickoff system.

Fig. 2. A schematic of the electrical arrangement. With the indicated voltages the best time resolution for fission fragments has been achieved.
Fig. 5. TOF spectrum measured with a flight path of 18 cm for fission fragments with two velocities of 0.82% difference; this corresponds to an energy difference of less than 1.5 MeV for the selected mean mass 95. The instrumental time resolution is 95 ps.

Fig. 6. TOF spectra for fission fragments with a flight path of 39.5 cm and a velocity of 1.326 cm/ns without (left) and with (right) an additional foil. The energy loss of 1.6 MeV and the energy stragglng cause the shift and the widening of the time resolution line.
Axial Ionization Chamber [1]

Nuclear Instruments and Methods 205 (1983) 455–459
North-Holland Publishing Company

HIGH RESOLUTION AXIAL IONIZATION CHAMBER FOR FISSION PRODUCTS

A. OED 1), P. GELTENBORT 2), F. GÖNNENWEIN 1), T. MANNING 1) and D. SOUQUE 3)

1) Institut Laue-Langevin, 156 X, 38042 Grenoble Cedex, France
2) Physikalisches Institut der Universität Tübingen, Auf der Morgenstelle D, D-7400 Tübingen, Germany
3) Ecole National Supérieure d'Ingénieurs Electriiciens, Grenoble, Domaine Universitaire, F-38400 Saint-Martin d'Hères, France

Received 12 July 1982

The construction of an ionization chamber with the electrical field parallel to the particle beam (axial chamber) is described. The energy resolution achieved for typical light and heavy mass fragments from the thermal neutron induced fission of 235U is 385 keV and 510 keV, respectively.
Fig. 1. Cross section of the axial ionization chamber.
Axial Ionization Chamber

Fig. 3. Spectrum of a fragment beam from the neutron induced 235U fission selected by the separator Lohengrin with the mass over ionic charge ratio $A/Q = 5$ and the velocity $v = 1.42$ cm/ns. The chamber was operated with isobutane (99.5%) at a pressure of 120 Torr and a specific field strength of 5.9 V/cm·Torr. The entrance window is made from a Parylene-C-foil of 30 μg/cm² in thickness.

Fig. 2. Spectrum from a 252Cf source measured with the axial ionization chamber. Ionization gas: isobutane (99.5%) at 120 Torr. The specific field strength is 5.9 V/cm·Torr. The alpha-particles are not stopped in the chamber. The entrance window is made from stretched polypropylene foil with 50 μg/cm² in thickness.
A NEW METHOD TO IDENTIFY NUCLEAR CHARGES OF FISSION FRAGMENTS

A. OED 1, P. GELTENBORT 2 and F. GÖNNENWEIN 1

1 Institut Laue-Langevin, 156 X, 38042 Grenoble Cedex, France
2 Physikalisches Institut der Universität Tübingen, Auf der Morgenstelle D, 7400 Tübingen, West Germany

Received 1 June 1982

For a mass and velocity selected beam of fission fragments, the elemental components of the beam have been determined by measuring the difference between the time the fragments enter an axial ionization chamber (with the electrical field lines parallel to the particle trajectory) and the time the anode pulse crosses a given level. The nuclear charge resolution achieved for typical fission fragments out of the light mass group in thermal neutron induced fission of ^{235}U is $Z/\Delta Z = 43$ for a nuclear charge $Z = 39$.
Bragg Curve Spectroscopy [2]

\[Z/\Delta Z = 4.3 \]

at a nuclear charge of \(Z = 39 \)
Bragg Curve Spectroscopy [3]

Experimental set-up

Velocity selected fission fragments of the spectrograph "Lohengrin" at the I.L.L. are stopped in an axial ionization chamber. The anode signal which corresponds to the Bragg curve is digitally stored. A trigger signal is delivered by an external time pick-off.
Cosi fan tutte (PN8)

North-Holland, Amsterdam

A MASS SPECTROMETER FOR FISSION FRAGMENTS BASED ON TIME-OF-FLIGHT AND ENERGY MEASUREMENTS

A. OED and P. GELTENBORT
Physikalisches Institut der Universität Tübingen, Auf der Morgenstelle D, D-7400 Tübingen, Fed. Rep. Germany

R. BRISSOT, F. GÖNNENWEIN and P. PERRIN
Institut Max von Laue – Paul Langevin, 156 X, 38041 Grenoble Cedex, France

E. AKER and D. ENGELHARDT
Institut für Experimentelle Kernphysik, Universität Karlsruhe, Kaiserstrasse 12, D-7500 Karlsruhe, Fed. Rep. Germany

Received 24 February and in revised form 14 June 1983

With the aim of determining masses of fission fragments by measuring velocities and kinetic energies, specially adapted time-of-flight detectors and ionization chambers were developed. The start and stop detectors for the time-of-flight sense the electrons emitted from a thin foil upon passage of fragments. The time resolution achieved is \(\approx 100 \) ps. The ionization chambers have the electric field arranged parallel to the particle trajectory, and with isobutane as the counting gas, the intrinsic energy resolution for fragments with \(m = 100 \) amu is typically 400 keV. The combination of both the time-of-flight and ionization chamber, to produce an energy–time-of-flight spectrometer, was tested with fragments from the \(^{235}\text{U}(n, f) \) reaction on an external thermal neutron beam at the ILL/Grenoble. In the light group of fission fragments, all masses are resolved individually with a mass resolving power \(m/\delta m = 170 \) for \(m = 95 \).
Cosi fan tutte (PN8) detector performances

Fig. 1. Time-of-flight spectrum of fission fragments from $^{235}\text{U}(n, f)$ for thermal neutrons. Target thickness 100 μg/cm2.

Fig. 2. Energy spectrum of fission fragments from $^{235}\text{U}(n, f)$ for thermal neutrons. Target thickness 100 μg/cm2.

Counts

Time of flight 53ps/ch.

Energy 140 keV/ch.
Fig. 3. Contour plot of correlated time-of-flight and energy data from 235U(n, f) for thermal neutrons. Target thickness 350 μg/cm2. The plot is for window settings on the time-of-flight and the energy as indicated by hatched lines in figs. 1 and 2. The data correspond to the light mass group. The insert shows schematically the setup.

Fig. 4. Energy spectrum of fission fragments from 235U(n, f) for thermal neutrons with a time window of 53 ps set on the time-of-flight. The peaks in the spectrum correspond to individual masses in the light mass wing of fragments.

Cosi fan tutte (PN8) mass resolution
Investigation of mass, charge and energy of 241Pu(n$_{th}$, f) fragments with the Cosi-Fan-Tutte spectrometer

P. Schillebeeckx a, C. Wagemans b,c, P. Geltenbort d, F. Gönnenwein e, A. Oed d

a CEC-JRC, Institute for Safety and Technology, I-21020 Ispra, Italy
b National Fund for Scientific Research, Brussels, Belgium
c Nuclear Physics Laboratory of the University, B-9000 Gent, Belgium
d Institut Laue–Langevin, F-38042 Grenoble, France
e Physikalisches Institut der Universität, W-72076 Tübingen, Germany

Received 15 June 1993; revised 18 May 1994

Abstract

The mass, charge and energy distributions and their correlations have been studied for the fragments from thermal neutron-induced fission of 241Pu, using the fission-fragment spectrometer Cosi-Fan-Tutte. The mass and charge distributions obtained agree with the corresponding radiochemical data. A proton even–odd effect of $(10 \pm 1.5)\%$ on the nuclear-charge yield and 0.4 ± 0.2 MeV on the total kinetic energy has been determined. A fission-mode analysis on the nuclear-charge distribution has been performed.
Fig. 4. Comparison of the nuclide distribution for $^{235}\text{U}(\text{n}_{\text{th}}, f)$ obtained in this work (points) with the results of Lang et al. [16] (full line).

Fig. 10. The elemental distribution summed over kinetic energy for $^{241}\text{Pu}(\text{n}_{\text{th}}, f)$ obtained in this work (points) with the results of the fission-mode analysis (full line).
Anton Oed was born 1933 in Ulm

He studied Physics in Tübingen

For his diploma thesis on
“The double resonance spectrum of ^{23}Na”
he received the prize of the Mathematic-Natural
Scientific Faculty of the University in Tübingen

In his doctoral thesis, again in atomic physics, he studied
“The double quanta decay of the 2s level of hydrogen”

.........

In September 1979 detached from the Physical Institute of the University of Tübingen, Germany, to the Institut Laue-Langevin (ILL) in Grenoble, France, to develop the detectors for the fission fragment spectrometer “Cosi fan tutte”

Returned to his “beloved atomic physics” in Tübingen

But “bought back” by the ILL to develop the next generation neutron detectors (5 October 1983 – 30 April 1998)

More in the following talks by V. Peskov and B. Guerard
1988 proposed “Position-Sensitive Detector with Microstrip Anode for Electron Multiplication in Gases”, NIMA263, 351-359

PSD stands for Position Sensitive Detector

which means in German

OrtsEmpfindlicher Detektor or OED
Workshop

Progress in Gaseous MicroStrip Proportional Chambers

21 - 23 June 1993

ILL, Grenoble (France)