PERFORMANCES OF THE MICROMEGAS VERTEX TRACKER AT THE CLAS12 EXPERIMENT FOR THE 2017-2018 PHYSICS RUN

MPGD CONFERENCE 2019, LA ROCHELLE, FRANCE

MAXENCE VANDENBROUCKE

ON BEHALF OF THE MVT GROUP AT SACLAY:

- The CLAS12 Experiment at Jefferson Lab
- The Micromegas Tracker, Forward Detectors, and Cylindrical Detectors
- Installation in the CLAS12 spectrometer
- First results after data taking
THE CLAS12 EXPERIMENT

- Upgrade of the CLAS Experiment at Jefferson lab
- Study of the nucleon structure with ~11 GeV electron beam at high luminosity ($10^{35}$ cm$^{-2}$s$^{-1}$)
- Targets: liquid hydrogen (protons), liquid deuterium (neutrons), other nuclei in the future

Micromegas Vertex Tracker (MVT):
- Improve the track reconstruction in the vicinity of the target
- Inserted in the 5T solenoid
- Used in combination with the Silicon Vertex Tracker (SVT)
4 m² of Micromegas detectors

DREAM based Front-End Electronics ~ 20k ch.

Remote off-detector frontend electronics connected with 2m micro-coaxial cables

Forward Detectors (Disks)
- High particle rate (30MHz)
- Resistive strips divided in 2 zones inner/outer
- Dimensions: 6x 430 mm diameter disk with a 50 mm diameter hole at the center

Cylindrical Barrel (Curved Tiles)
- Low momentum particles => Light Detectors
- Limited space of ~10 cm for 6 layers
- High magnetic field (5T)
- Phase 1 (2016) : 2 Layers (6 Det. of 120°)
- Phase 2 (2017) : 6 Layers (18 Det.)
THE DREAM FRONT-END ELECTRONICS

- Signals are continuously pre-amplified, shaped, sampled at 20-30 MHz and kept in the circular analog memory 512 cells deep
  - Covers 16 µs trigger latency
- At each trigger the 4 to 10 corresponding samples are readout and digitized
  - Readout does not disturb sampling
- Retained samples are digitally processed
  - Pedestal equalization – online
  - Common noise subtraction – online
  - Zero suppression – online
  - Measure charge and time – off-line
- Micro-coax cables – 64 channels – low capacitance 43 pF/m

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarity of detector signal</td>
<td>Negative or Positive</td>
</tr>
<tr>
<td>Number of channels</td>
<td>64</td>
</tr>
<tr>
<td>External Preampifier option</td>
<td>Yes, access to the filter or SCA inputs</td>
</tr>
<tr>
<td>Charge measurement</td>
<td></td>
</tr>
<tr>
<td>Input dynamic range/gain</td>
<td>50 IC; 100 IC; 200 IC; 600 IC, selectable per channel</td>
</tr>
<tr>
<td>Output dynamic range</td>
<td>2V p-p</td>
</tr>
<tr>
<td>L.N.L</td>
<td>&lt; 2%</td>
</tr>
<tr>
<td>Charge Resolution</td>
<td>&gt; 8 bits</td>
</tr>
<tr>
<td>Sampling</td>
<td></td>
</tr>
<tr>
<td>Peaking time value</td>
<td>50 ns to 900 ns (16 values)</td>
</tr>
<tr>
<td>Number of SCA Time bins</td>
<td>9/12</td>
</tr>
<tr>
<td>Sampling Frequency (fSCA)</td>
<td>1 MHz to 50 MHz</td>
</tr>
<tr>
<td>Triggering</td>
<td></td>
</tr>
<tr>
<td>Discriminator solution</td>
<td>Leading edge</td>
</tr>
<tr>
<td>HIT signal</td>
<td>OR of the 64 discriminator outputs in LVDS level</td>
</tr>
<tr>
<td>Threshold Range</td>
<td>5% or 17.5% of the input dynamic range</td>
</tr>
<tr>
<td>L.N.L</td>
<td>&lt; 5%</td>
</tr>
<tr>
<td>Threshold value</td>
<td>(7-bit + polarity bit) DAC common to all channels</td>
</tr>
<tr>
<td>Minimum threshold value</td>
<td>2 noise</td>
</tr>
<tr>
<td>Readout</td>
<td></td>
</tr>
<tr>
<td>Readout frequency</td>
<td>Up to 20 MHz</td>
</tr>
<tr>
<td>Channel Readout mode</td>
<td>all channels excepted those disabled (statically)</td>
</tr>
<tr>
<td>SCA cell Readout mode</td>
<td>Triggered columns only</td>
</tr>
<tr>
<td>Test</td>
<td></td>
</tr>
<tr>
<td>Calibration (current input mode)</td>
<td>1 channel among 84; external test capacitor</td>
</tr>
<tr>
<td>Test (voltage input mode)</td>
<td>1 channel among 84; internal test capacitor (1/charge range)</td>
</tr>
<tr>
<td>Functional (voltage input mode)</td>
<td>1, few or 64 channels; internal test capacitor/channel</td>
</tr>
<tr>
<td>Trigger rate</td>
<td>Up to 20 kHz (4 samples read/trigger)</td>
</tr>
<tr>
<td>Counting rate</td>
<td>&lt; 50 kHz / channel</td>
</tr>
<tr>
<td>Power consumption</td>
<td>&lt; 10 mW / channel</td>
</tr>
</tbody>
</table>

Table 1: Summary of the DREAM requirements.

~1K ch. Detector
16 x 64 ch. Micro-Coax cables (1.5 -2.2m)
2 x 512 ch. Front-End Unit
CLAS12 MM FORWARD TRACKER

• 6 layers of Micromegas with 1D strips alternatively rotated at $0^\circ$, $60^\circ$, $120^\circ$
• 86 mm to 380 mm diameter active area
• Bulk MM + Resistive Layer
• Same detector design for the 6 detectors:
  • Dimensions: 430 mm diameter disk with a 50 mm diameter hole at the center; 5mm drift gap
  • 100 µm PCB glued on ROHACELL
  • 525 µm pitch, with 120 µm between two strips, 1024 strips
  • 2 independent resistive strips zones (inner/outer)

Charging up effect studies with X-Rays

Black : no ladders
Blue : ladders

Resistive Strips w/o interconnections (ladders)
FORWARD DETECTORS IN COSMIC TEST BENCH
FORWARD DETECTOR COSMIC RAYS TEST

- 6 Detectors fully operational with no current on the resistive layer after many cleaning procedures
- 6 Detectors have been delivered to J-Lab in Sept. 2016
- Radiation length of 0.70% X/X0 => To be be lowered for the next run
- Close to full efficiency (98%) in the active area
- Resolution better than 200 µm (limited by tracking of the test-bench)
- Time Resolution better than 20 ns (same)
CLAS12 BARREL DETECTORS PRODUCTION

- Total of 6 layers segmented in phi (3 x 120° sectors) = 18 detectors total
- 6 Different detector’s radii
- 2 different types (C and Z types)
- Material (PCB/Bulk + Drift) from the CERN Workshop
- Assembly to cylindrical shape at Saclay
- Test and Characterization at Saclay before shipping to J-Lab
- 8-9 days to assemble one detector + 1 week of test

<table>
<thead>
<tr>
<th>Layer</th>
<th>Production</th>
<th>ch.</th>
<th>Radius</th>
<th>Length</th>
<th>Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR4-C</td>
<td>3 + 1spare</td>
<td>896</td>
<td>146mm</td>
<td>712mm</td>
<td>302mm</td>
</tr>
<tr>
<td>CR4-Z</td>
<td>3 + 1spare</td>
<td>640</td>
<td>161mm</td>
<td>712mm</td>
<td>333mm</td>
</tr>
<tr>
<td>CR5-Z</td>
<td>3 + 1spare</td>
<td>640</td>
<td>176mm</td>
<td>712mm</td>
<td>364mm</td>
</tr>
<tr>
<td>CR5-C</td>
<td>3 + 1spare</td>
<td>1024</td>
<td>191mm</td>
<td>712mm</td>
<td>396mm</td>
</tr>
<tr>
<td>CR6-Z</td>
<td>3 + 1spare</td>
<td>768</td>
<td>206mm</td>
<td>712mm</td>
<td>427mm</td>
</tr>
<tr>
<td>CR6-C</td>
<td>3 + 1spare</td>
<td>1152</td>
<td>221mm</td>
<td>712mm</td>
<td>459mm</td>
</tr>
<tr>
<td>CR6-C new</td>
<td>3 spare</td>
<td>1152</td>
<td>221mm</td>
<td>712mm</td>
<td>459mm</td>
</tr>
</tbody>
</table>
COMPACT DESIGN
INTEGRATION OF ONE 120° SECTOR
OPERATION IN CLAS12 AND THE 5T MAGNETIC FIELD

- Small volume for instrumentation (6x15mm)
- Remote off-detector frontend electronics using 2.2m long coaxial cable + DREAM FEE
- No fan for cooling
- EM Shielding challenging
- Lorentz Angle
  - Slow gas to reduce drift velocity
  - Small drift gap
  - High electric field
    - 6kV/cm for C
    - 5kV/cm for Z
  - Degradation of spatial resolution
  - Effect depends on the charge of the particle
  - Modify transverse diffusion

> Clas-note 2007-004: Simulations of Micromegas detectors for the CLAS12 experiment (S. Procureur)
BARREL DETECTORS: PERFORMANCE WITH COSMIC RAYS

- 6 Layers of cylindrical detectors divided in 120° sectors = 18 Micromegas tiles
- Bulk + Resistive Micromegas
- Less than 0.5% of a radiation length per layer
- Cylindricity measured to be precise up to ~2mm in radius
- Resolution better than 200µm per layer with cosmic rays
- Time resolution of ~25ns with cosmic rays
In 2016 Successful integration at JLAB of ~1/2 of the layers together with the Silicon tracker and joint test with cosmic rays

Residuals of MM:
~ 400 µm for Z det.
~ 5 mm for “C” det.
MVT ARRIVES AT CLAS12 IN FALL 2017
ENVIROMENTAL CHALLENGE

- Unexpected high background increased the silicon vertex tracker leakage current and force to increase cooling in the central tracker.
- First cooling brought humidity issues fixed by nitrogen flushing.
- A few detectors had to be replaced.
- Micromegas tiles have been operated below freezing with no further issues.

Humidity on barrel detectors

Temperature recorded on the detectors for 2018-2019
DETECTOR CURRENT

• Detector current vs beam luminosity

Up to 2μA per Micromegas at nominal beam intensity
Occupancies of FMT (left) and BMT (right) as a function of the beam current. Half of the FMT disks has a lower occupancy since only their inner region is active.

Hit occupancies for C-tiles at 2.2 GeV (left) and 10.6 (right). The elastic recoil protons are responsible for the large excess of events at 2.2 GeV, between strip number 400 and 500. The cross sections is too small at 10.6 GeV to see the protons.
CENTRAL TRACKER–1 TRACK EVENT

April 2019 - 10.2 GeV electron on LH$_2$ target
CENTRAL TRACKER – 2 TRACKS EVENT

April 2019 - 10.2 GeV electron on LH$_2$ target
CENTRAL TRACKER – 3 TRACKS EVENT

April 2019 - 10.2 GeV electron on LH₂ target
EFFICIENCY AND HV PLATEAU SCAN

- Tracking algorithms are not final yet => Very Preliminary Results
- 90%-100% efficiency reached in physics data taking conditions
- Working point for the mesh HV at ~500V in Ar:Iso 90:10
STATUS

• The CLAS12 experiment MM Vertex Tracker has been assembled and delivered to Jefferson Lab is on its way after 10 years since the first proposal

• Resistive Micromegas have been build and characterized
  • 18 + 6 (spares) cylindrical MM for the CLAS12 barrel detectors
  • 6 disks for the Forward Micromegas Tracker

• The Micromegas detectors have been taking data since fall 2017

• At nominal luminosity, detectors operate with a 2µA current on the mesh

• Unstable environmental conditions (temperature and discontinuous gas flow) damaged a few detectors that had to be placed

• Since December, we have stable condition and no detector issue

OUTLOOK

• Now CLAS12 is off for the HPS experiment (Heavy Photon Search)

• Fall 2019 : LD$_2$ data taking

• Winter 2019-2020 : replacement of the central tracker by a radial TPC using the same mechanics and DREAM electronics (BONUS)

• 2021 : Central tracker is put back and data taking with nuclear target (carbon, ...)

2019 MPGD Conference - CEA Saclay - Maxence Vandenbroucke
THE MVT GROUP AT SACLAY:


Contact: maxence.vandenbroucke@cea.fr
**REQUIREMENTS**

- **Compact tracker** \(\Rightarrow\) Cylindrical detectors
- **High magnetic field** \(\Rightarrow\) High lorentz Angle \(\Rightarrow\) small gap, slow gas, high drift field, high gain, deported electronics
- **Low Energy proton/electron** \(\Rightarrow\) Low X0
- **High rate in the forward region** \(\Rightarrow\) Low spark rate, fast gas

High gain, low spark \(\Rightarrow\) **Resistive MM**

Cylindrical Det. \(\Rightarrow\) **Bulk**

Low X0 \(\Rightarrow\) **Light material, glued**
CYLINDRICAL MICROMEGAS

Segmentation and preparation

Gluing of the side carbon ribs on circular shape

Electric leak test

Gluing of additional ribs

Setting drift plane

Gluing of the drift plane

2019 MPPD Conference - CEA Saclay - Maxence Vandenbroucke
CLAS12 BARREL : GEOMETRY

- 3D probing machine measuring points:
  - 270 points on top (drift side)
  - 120 points under (readout side)
- Cosmic rays data for cross-check

<table>
<thead>
<tr>
<th>List of measured points</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT-Arceau1_1</td>
<td>-3.588</td>
<td>231.995</td>
<td>-0.005</td>
</tr>
<tr>
<td>PT-Arceau1_2</td>
<td>28.993</td>
<td>231.995</td>
<td>33.071</td>
</tr>
<tr>
<td>PT-Arceau1_3</td>
<td>64.992</td>
<td>231.994</td>
<td>57.126</td>
</tr>
</tbody>
</table>

⇒ Mechanical precision up to ~2mm in radius
PRE-PRODUCTION FORWARD DISK FOR CLAS12: ISSUE WITH RESISTIVE LADDERS

- 2 pre-production (2015) detector tested, One was not ok:
  - High current due to a contact in the active area (can't burn it with sparks)
  - Current flows from the contact to ground (black dots)
  - Large impacted zone due to ladders
  - Drift electrode glued (intervention impossible)

Efficiency maps

Before the current appeared

With current

Current without ladders

Resistive Strips

40mm

0.5mm
PRE-SERIE BARREL DETECTORS TEST

Solutions:
- No resistive interconnection (ladders)
- Aluminum frame at the gas inlet
- More ground connections
- “C” Barrel detectors had no problem!
- Fixing is possible by filing the area with a drop of polymer

Fixing Procedure:
A lot of HV Test -> Soft Cleaning (aspiration, antistatic roller) imaging the problem -> HV + current (10-500µA) and IR imaging
Cleaning -> water cleaning (karcher) -> drying (air+oven)
-> Sodium Chlorate 60ºC -> Trash
Or if possible -> passivation with a drop of glue

Efficiency Map

Zoom on a part of the CLAS12 Barrel with thermal cam, with HV on and current of about 300 µA
NEW CONNECTION SCHEME, NEW PROBLEMS SILVER PASTE ISSUE

• The CR4Z layer has been the first produced using this method
  • => All 4 of them died after ~2 weeks of tests

=> Thermal imaging shows that high current appeared on the silver paste connection between the resistive layer and the PCB
TIME RESOLUTION

- Time Resolution with resistive detectors is ~25ns instead of ~15ns (depending on the conditions)
- Time resolution not critical for the CLAS12 barrel
- Inhomogeneities over the detector surface observed

- Solutions:
  - Electronic parameters optimization (~3ns) - done
  - 1D (2D?) corrections (~5ns) but difficult with cosmic rays
THE ASACUSA MICROMEGAS TRACKER

- Characterization at Saclay:

  - 2 x 6 Months of smooth data taking!
  - Effect of the magnetic field (80° Lorentz angle at low drift field)
The MicroTPC algorithm uses the time information on multi-strip clusters to extrapolate the track angle:

- MicroTPC algo on anti-p data:
  - Antiproton distribution (calibration data)
  - Track angle from a single layer barrel
  - Filtered distribution

Fitted signal in the drift space

Resolution Vs Track Angle

MicroTPC – MICROTPC ALGORITHM
CORRELATION BETWEEN SVT AND MVT

- DAQ including both SVT and MVT data is working
- Mapping and Geometry understood
- Track reconstruction with cosmic rays is working

Correlation bet. SVT tracks and BMT in Micromegas coordinates

Residuals*:
- ~ 400 µm for Z det.
- ~ 5 mm for “C” det.

* MC simulations show that 400µm residuals correspond to a 350µm resolution
2D EFFICIENCY MAPS

- Detectors’ efficiency with cosmic rays tracks from the SVT
- No major defect in BMT detectors
- SVT “ghost” due to shallow tracks in the SVT not reconstructed properly at that point