New MPGD-based muon telescopes for ScanPyramids and gas R&D

S. Procureur, D. Attié, S. Bouteille, D. Calvet, X. Coppolani, B. Gallois, H. Gomez, M. Kebbiri, P. Magnier, I. Mandjavidze

CEA / IRFU

La Rochelle, 09/05/2019
• Starting point
• New telescopes
• Gas R&D
• Maintenance & data taking
• Perspectives
Development of telescopes for HD muon imaging

Genetic multiplexing on MM Resistive strips, reverse grounding 2D readout

$$\Rightarrow \sigma \cong \frac{p'}{40}$$ $$\Rightarrow \text{large & stable gain}$$ $$\Rightarrow \text{less detectors}$$

Miniaturized equipment

$$\Rightarrow \text{low consumption}$$
STARTING POINT (1/2)
Development of telescopes for HD muon imaging

Genetic multiplexing on MM
Resistive strips, reverse grounding

⇒ $σ \approx \frac{p'}{40}$
⇒ large & stable gain
⇒ less detectors

Miniaturized equipment

⇒ low consumption
Discovery of the ScanPyramids Big Void in 2017

Nagoya KEK CEA

⇒ Best place to study it in more details is the Grand Gallery…
NEW MISSION – NEW TELESCOPES

Bigger telescopes, to be competitive with other teams (Nagoya)

• Surface doubled (1/2 m²): 4 → 8 detectors
• 2 telescopes → 16 detectors

Have to be compatible with operation in Grand Gallery

• Gas? (high pressure bottle, evacuation, autonomy)
• Small corridors…
• Tourists…
• Network / remote access…

⇒ Gas R&D to reduce consumption
… btw, why do we flush MPGDs with gas?

• A priori combination of leakage & outgasing
• Measured leak < 1 mL/h for most of the detectors

Effects easy to observe: just reduce the gas flow 😊

T2K gas: Ar-iC₄H₁₀-CF₄ (95-2-3)

Flowmeter OUT

IN: 0.4 L/h

Flowmeter IN

NB: HV automatically adjusted to keep constant gain

⇒ Large HV gradient between detectors

⇒ Accompanied by signal degradation & efficiency loss

• If flow is stopped: ~+1V/h to maintain the same gain

→ Problem: small injection rate = small circulation rate…
Can we reduce injection and keep circulation rate high (at small cost & low consumption)?

- make use of a turbine developed for HARPO (D. Attié & P. Magnier)
- Introduce a *semi-sealed* setup

NB: HV automatically adjusted to keep constant gain

⇒ Better homogeneity and efficiency by « mixing the shit »

⇒ Similar HV for all, but quite high

→ By how much is the circulation rate increased?

T2K gas: Ar-iC₄H₁₀-CF₄ (95-2-3)
Not easy to measure the flow without a flowmeter…

- Solution to measure the pressure drop in a circuit, via the Darcy-Weisbach equation:

\[\Delta P = f \frac{L \rho v^2}{D} \]

\[\Rightarrow \]

\[\Delta P = \frac{8}{\pi^2} f \frac{L}{D^5} \rho F^2 \]

- Typical Reynolds number below ~ 10 F [L/h]

\[\frac{8}{\pi^2} f = \frac{64}{Re} \]

\[\Rightarrow \]

\[\Delta P = \frac{128 \mu L F}{\pi D^4} \]

⇒ Measuring \(\Delta P \) in a given setup with the turbine gives the corresponding flow:

\[\begin{array}{cccccccccc}
 F & [L/h] & 0.1 & 0.2 & 0.3 & 0.5 & 1.0 & 2.0 & 3.0 & 4.0 & 5.0 \\
 \Delta P_{\text{calc}} & [\text{mbar}] & 0.10 & 0.19 & 0.29 & 0.48 & 0.96 & 1.92 & 2.88 & 3.84 & 4.80 \\
 \Delta P_{\text{mes}} & [\text{mbar}] & 0.09 & 0.20 & 0.32 & 0.50 & 0.93 & 1.94 & 2.91 & 3.88 & 5.01 \\
\end{array} \]
Effect of Humidity (1/2)

Measured with T,P,H probes (Yocto-Meteo) used since 2016 in ScanPyramids

- Relative humidity around 10-40% routinely measured in telescopes

 ![Image of humidity probe](image)

 yields less than 1% of H$_2$O in volume (only)

 Ex: 4.5 g/m3 of water yields 0.6% of H$_2$O in the gas

- Humidity goes essentially with 1/F (gas injection flow)

 \[\Rightarrow \text{Good candidate to explain gain drop and HV gradient} \]
Tests with H2O absorbers

- As before, HV adjust automatically to keep constant gain (see pressure effect!)

![Graphs showing the effect of humidity on different detectors and related parameters over time.](image_url)
Tests with H2O absorbers

- As before, HV adjust automatically to keep constant gain (see pressure effect!)

⇒ Reduces humidity by a factor 4 in a few hours

⇒ HV drop by 18V!

⇒ Much better gas quality

• What about Oxygen?
Effect of Oxygen (1/2)

Measured with Yocto-serial coupled with Luminox sensor (SST sensing)

- Price: 120 euros for Yocto+Luminox

- Tests of the sensitivity:

 ⇒ (relative) accuracy of 100 ppm, but can reach better than 10 ppm by time integration
Test with O2 absorbers

- As before, HV adjust automatically to keep constant gain (see pressure effect!)

⇒ Typical O$_2$ around 1%
(largely depends on leak rate)
Test with O2 absorbers

- As before, HV adjust automatically to keep constant gain (see pressure effect!)

⇒ Another ~18V drop by Oxygen absorption!
Test with O2 absorbers

- As before, HV adjust automatically to keep constant gain (see pressure effect!)

⇒ Another ~18V drop by Oxygen absorption!
⇒ HV correlate maximally with O_2 concentration
Effect of Gas Pipes

Pure argon flushed in 1 m pipes during 1 hour (80 volume flushes)

All pipes equivalent?
Effect of Gas Pipes

Pure argon flushed in 1 m pipes during 1 hour (80 volume flushes)

\[\text{O}_2 \text{ (ppm)} \]

<table>
<thead>
<tr>
<th>pipe</th>
<th>PA (nylon,1)</th>
<th>PTFE (teflon)</th>
<th>PUN (1)</th>
<th>PA (nylon,2)</th>
<th>PUN (2)</th>
<th>Aluminum</th>
</tr>
</thead>
</table>

\[\text{H}_2\text{O} \text{ (g/m}^3) \]

⇒ Definitely not!
TELESCOPES IN THE PYRAMID

All gas improvements implemented

- Better gas tightness
- Semi-sealed mode
- Change of gas pipes & elements

⇒ *1 L/h for 4 detectors (15L) in 2016, 0.5 L/h for 16 detectors (50L) in 2019*

1st installation in July 2018

- Data taking from July ‘18 to January ‘19
- Some strange issues with detectors and probes…
Another mission in March ‘19 for maintenance and new bottle…
TELESCOPES IN THE PYRAMID

Another mission in March ‘19 for maintenance and new bottle...
Another mission in March ‘19 for maintenance and new bottle…
Another mission in March ‘19 for maintenance and new bottle…
Another mission in March ‘19 for maintenance and new bottle…
DATA TAKING

Accumulated ~ 25 millions of reconstructed muons so far

Real muography (9 days) simulation Tan(\phi) direction for di-muon events
CONCLUSION & PERSPECTIVES

MPGDs validated in more and more difficult conditions

- Dust, storms, large temperature variations, humidity, mice

Successful gas R&D to lower gas consumption by a factor close to 10

- Be careful with gas pipes you use!
- Still a lot to understand (gas spectrometer to be purchased)
- T2K gas extremely sensitive to pollutants

More telescopes & detectors currently under test

- Plug & play, 1m² telescope (used on Gbar)
- See Hector’s poster on multiplexed TPC
THANK YOU!