Recent Advances with RPWELL detectors: Physics and potential applications

A. Roy1,2, L. Arazi1, P. Bhattacharya2, A. Breskin2, S. Bressler2, E. Erdal2, I. Israelashvili3, L. Moleri2,4, D. Shaked-Renous2, A. Tesi2

1 Ben Gurion University
2 Weizmann Institute of Science
3 Negev Nuclear Research Centre
4 Technion - Israel Institute of Technology

Research performed at the Detectors Group at WIS Physics Faculty, under partial support of the Israel Science Foundation, I-CORE Program of the Planning and Budgeting Committee, common fund of the RD51 collaboration at CERN (the Sampling Calorimetry with Resistive Anode MPGDs (SCREAM)project)
The Resistive-Plate WELL (RPWELL): a robust single-element detector

- Single-sided THGEM
- Coupled to segmented readout through material of high bulk resistivity \((10^9 \text{ – } 10^{12} \, \Omega \text{ cm})\)
- Combining MPGD and RPC concepts

Features:

Discharge-free operation (Gain \(10^4 \text{ – } 10^7\))

- With Ne- and Ar-based gas mixtures
- Broad dynamic range: MIPs (\(\mu, \pi\)); x-rays, UV-photons
- Low avg. pad multiplicity at High efficiency
- Up to 50x50 cm\(^2\) RPWELL prototypes tested
- Gain stabilization mechanisms studied
- Moderate counting rates (\(~10^4 \text{ Hz/cm}^2\))
- Sub-mm localization resolution (\(\sigma \approx 280 \, \mu\text{m}\))

2013 JINST 8 P11004
2016 JINST 11 P01005
2016 JINST 11 P09013
NIM A 845 (2017) 262 -265
2017 JINST 12 P10017
2017 JINST 12 P09036
arXiv:1904.05545v1
Motivation

Applications requiring **cost-effective large-area detectors with moderate spatial resolution.**

Single-stage **sampling elements** for (Semi) Digital Hadronic Calorimeter – *(S)*DHCAL - Up to 50x50 cm² RPWELL prototypes *(Talk by Dan Shaked Renous).* [arXiv:1904.05545v1](https://arxiv.org/abs/1904.05545v1)

Single- & double-stage **RPWELL-based detectors** - potential candidates for **UV-photon detection @ Room Temperature (RT)**
With high dynamic range and detection efficiency

Cryogenic RPWELL-based detectors at LXe & LAr Temperatures *(T) →*
- UV-photon detection in noble-liquid detectors with **Cryogenic Gaseous Photomultipliers (GPM);** neutrino physics, Dark Matter & other rare-event searches, fast-neutron and Gamma-imaging.
- **Charge multipliers in dual-phase noble-gas detectors:** investigating possible operation at higher stable gain relative to LEM (Large Electron Multipliers).
- **Immediate challenge → Resistive materials** of $\rho = 10^9 – 10^{12} \Omega\text{-cm}_\text{bulk}$ resistivity @ LXe & LAr T.
Single-stage sampling elements for (Semi) Digital Hadronic Calorimeter – (S)DHCAL

Physics requirements:
- High detection efficiency
- Low pad multiplicity
- Moderate rate capability
- Stability over wide dynamic range

Reached DHCAL requirements with RPWELL
- 98% efficiency
- Multiplicity 1.2
- No efficiency loss up to 10^4 Hz/cm2
- Stable operation in high intensity pion beam – No discharge over 10^8 events
- Total thickness ~ 5 mm w/o electronics
- Use of Argon gas – Low cost, high # of PEs, low diffusion

Meet DHCAL requirement for a single sampling element

JINST (2016) P09013 ; JINST (2016) P01005
Double-stage RPWELL-based detectors -- potential candidates for UV-photon detection @ RT
RPWELL–based 2-stage UV-photon detector (RT)

MOTIVATION: enhanced Polya distributions ➜ increase efficiency for single photons (e.g. in RICH)

RT UV photon detection with MPGD for RICH
Recent example: COMPASS RICH-1

J. Agarwala et al., NIM A (2019),
https://doi.org/10.1016/j.nima.2019.01.058
(Micromegas +THGEM based)

Get Signal pulse-height distribution with peaked Polya distribution

⇒ Better signal-to-noise ratio (compared to an exponential distribution)
⇒ Increased single photon detection efficiency

\[P(N_e) = \frac{(1+\theta)^{N_e}}{\Gamma(1+\theta)} \left(\frac{N_e}{\bar{N}_e} \right)^\theta \exp \left[-(1+\theta) \frac{N_e}{\bar{N}_e} \right] \]

where \(\bar{N}_e \) is the mean gain and \(\theta \) the Polya parameter which gives the relative gain variance \(f \):

\[f = \left(\frac{\sigma_{N_e}}{\bar{N}_e} \right)^2 = \frac{1}{1+\theta} \]

Byrne J, NIM A 74 (1969) 291-296
RPWELL–based 2-stage UV-photon detector (RT)

- Double Stage RPWELL – high dynamic range of gain
- Clear Polya distribution, improves with higher gain
- Stable operation up to high gain

Detector parameters:
- 5 mm Drift Gap; 2 mm Transfer gap
- 0.6 mm thick CsI-coated Double-sided THGEM
- 0.4 mm thick Single-sided THGEM
- 0.4 mm thick Semitrion as RP
- Source: Hg Lamp
- Gas: Ne/5%CH₄

Single Electron Spectrum Evolution, $\Delta V_{RP} = 500 – 775$V

- Gas: Ne/CH₄ 95/5
- $\Delta V_{THGEM} = 700$ V
- Drift Field = 0 V/cm
- Transfer Field = 500 V/cm

Counts

0 5 10 15 20
Electrons

9.4×10^4 4.2×10^5 1.0×10^6 3.4×10^6

5.5×10^6
Efficiency estimated numerically - from the fitted spectrum

Electronics threshold $\sim 10^4$ electrons \rightarrow Detecting single electrons ($\theta \sim 0.2$) with $> 90\%$ efficiency

The spectra were fitted with $P(N_e, \theta)$

The spectra were fitted with $P(N_e, \theta)$

- θ parameter vs $Gain$, Efficiency(e) & $% (CH_4)$ in Ne
 - Observation: Increase in CH$_4$ \rightarrow lower θ at same gain
 - Preliminary - Stable UV detection ($\varepsilon>90\%$) under 6 keV X-ray background.
 - Ongoing measurements: lower gains, Ar-mixtures & background rate dependence

Observed Gas Mixture dependence
Cryogenic-RPWELL

In collaboration with:

Carlos Pecharromán (Instituto de Ciencia de Materiales de Madrid, ICMM)
Miguel Morales (University of Santiago de Compostela, USC) and
Diego Gonzalez Diaz (University of Santiago de Compostela, USC)

Thanks!
Challenges for low-T operation: Resistive-plate materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Source</th>
<th>Volume Resistivity (ρ)@ RT</th>
<th>Resistivity as f(T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semitron ESD 225 (Acetal based)</td>
<td>Quadrant Plastics USA</td>
<td>1.5x10^9 Ω-cm</td>
<td>Quenches discharges completely at RT. ρ increases exponentially with decreasing T. Investigated with small RPWELL prototypes</td>
</tr>
<tr>
<td>Low Resistivity Silicate (LRS) Glass</td>
<td>Prof. Wang Yi; Tsinghua University, China</td>
<td>2x10^{10} Ω-cm</td>
<td>Quenches discharges completely at RT. ρ increases exponentially with decreasing T. Investigated @ RT with up to 50x50 cm2 RPWELL</td>
</tr>
<tr>
<td>Ferrite Ceramics</td>
<td>C Pecharromán, M Morales et al, ICMM/CSIC, Spain</td>
<td>~105 - 107 Ω-cm</td>
<td>ρ increases exponentially with decreasing T but tunable. Investigated in RPWELL down to 150K</td>
</tr>
</tbody>
</table>

Other Resistive materials tested → **Fail to quench Discharges @ RT and/or low T**:

1. Tivar EC (UHMW-PE) & Tivar ESD (UHMW-PE) -> Prof. Jerry Vavra, SLAC, $\rho \sim 10^6 - 10^7$ Ω-cm, constant as f(T); ρ too low - fails to quench discharges.
2. (PTFE + 1.5% Carbon) -> 3M, USA, $\rho \sim 10^7 - 10^8$ Ω-cm (function of Carbon content); constant as f(T); ρ too low - fails to quench discharges.
3. Araldite + Graphite (Graphite % from 15-30 %) -> Fabricated @WIS, $\rho \sim 10^8 - 10^{14}$ Ω-cm. Fails to quench discharges.
4. Si-based Ceramics -> Prof. Lothar Naumann, HZDR, Germany, $\rho \sim 10^8$ Ω-cm. ρ too low @ RT increases exponentially with decreasing T, unsuitable @low T.
The Resistive Plate - Fe Ceramics

- Resistive materials range $\rho \sim 10^9 - 10^{12}$ $\Omega \cdot$cm
 (LXe & LAr T’s)

- Semitron & LRS Glass (suitable @ RT)
 $\rho > 10^{14}$ $\Omega \cdot$cm around 200K.

- Fe-Ceramics - robust ceramic composites with tunable electrical properties
 (C Pecharrromán, M Morales et al; 2013 JINST 8 P01022)

- Sample S24: $\rho \sim 10^{11}$ $\Omega \cdot$cm @ LXe Temp
 (measured in controlled conditions).

- Preliminary ρ measurements down to LAr T.
 Promising results with ZN80

- Dedicated experiments ongoing @ USC, Spain and WIS to understand the behavior.
First Fe-Ceramic RPWELL @ LXe T

- First proof of discharge-free RPWELL detector operation at 163K !!

- Fe-Ceramic RPWELL tested in Ne/5%CH₄ at RT & low T in LN₂ + ethanol bath down to 160 K (ρ~ 10¹¹ Ω-cm)

- Detector investigated with X-rays & single UV-photons (RPWELL without/with CsI photocathode)

Fe Ceramic RPWELL compared to THWELL (same THGEM, but with standard Cu anode)
Single-stage Cryo-RPWELL – first results @ 163K

Discharge-free RPWELL operation up to $\sim 10^4$ gain with X-rays, and $\sim 10^5$ with single UV-photons (without CsI) @ 163K
Cryo-RPWELL Results @ 163K – Discharge behavior

Discharge behavior at 163K:

RPWELL → **Discharge-free operation** upto 10^4 gain. ~5nA discharges @ gain > 10^4. THWELL → ~200nA discharges! Onset of discharges around 10^3 gain (850V). Unstable @ 10^4 gain. Regular discharges
2-stage THGEM+ Cryo-RPWELL – first results @ 163K

Detector parameters:
- 5 mm Drift gap; 2 mm Transfer gap
- 0.6 mm thick CsI-coated Double-sided THGEM
- 0.4 thick Single-sided THGEM
- 2.1 mm thick Fe ceramic as RP
- Source: H₂ discharge lamp

2-stage THGEM + Cryo-RPWELL (Ne/5%CH₄) →
Gain >10⁵ with X-rays @ RT and 163K
Gain >10⁶ with single UV photons @ RT and
Gain ~10⁶ @ 163K
2-stage THGEM+ Cryo-RPWELL — first results @ 163K

Gain ~ 1.2e5;
\(\Delta V_{RP} = 875\text{V} \)
\(\Delta V_{TH} = 800\text{V} \)

FWHM ~ 14%

Ne/5%CH\(_4\)
163K

Pulse height spectra of double-stage detector with X-rays; T = 163K

Clear Polya distributions obtained @ T = 163K with the double-stage detector with Single UV-photons

\(\Delta V_{RP} = 750\text{V} \)
\(\Delta V_{TH} = 900\text{V} \)
Gain ~ 2.5e6
Single UV photons, 163K, w/o CsI
Cryo-RPWELL based noble liquid detectors -- Investigating possible enhancement of maximum achievable stable detector gain in ultrapure Ar vapor
Cryo-RPWELL charge multipliers in dual-phase noble-gas detectors

Dedicated LAr cryostat @ WIS – WISArD
(Weizmann Institute Argon detector)

Breakdown of Fe-Ceramic RPWELL vs THWELL (Fe-Ceramic -> $\rho \sim 10^6$-10^7 Ω-cm @ RT):

- **200-300K** – No difference in breakdown voltages -> Fe-Ceramic ρ inadequate to quench discharges!

- **$T < 200K$** -- $\rho \sim 10^9$ Ω-cm \Rightarrow Effect of RP clearly seen. **Higher RPWELL Breakdown Voltages.**
Summary & Outlook

- **Resistive material – main challenge → Fe-Ceramics suitable at 163K.** Promising results for LAr (~87K).

 Ongoing: Detailed investigations @ USC and WIS

- **UV detectors @ RT → 2-stage CsI-THGEM + RPWELL.**

 Clear Polya distributions in Ne/5%CH₄.

 Single-photon detection efficiency >90%.

 ➔ potential candidate for UV-photon detection.

 Ongoing: efficiency vs background, Single-stage RPWELL, other gases & quenchers (Ar, CF4, etc).

- **Cryogenic RPWELL @ 163K → Single-stage RPWELL (Ne/5%CH₄)**

 Gain ~10⁴ with X-rays, and ~10⁵ with single UV-photons.

 Discharge quenching at 163K: RPWELL ~5nA vs THWELL ~200nA!

- **RPWELL-based Cryogenic Gaseous Photomultipliers (GPM) @ 163K → 2-stage THGEM + RPWELL (Ne/5%CH₄)**

 Gain >10⁵ with x-rays and ~10⁶ with single UV photons. Clear Polya distributions.

 Ongoing: 2-stage CsI-THGEM + RPWELL; 10cm diameter cryo-GPM; Photon Detection Efficiency.

- **Cryo-RPWELL charge multipliers in dual-phase Ar detectors →**

 Preliminary studies highlight role of RP at low T

 Ongoing: Tuning resistivity to LAr-T; gain with single-stage RPWELL in dual-phase Ar.
Thanks!!