

Recent Advances with RPWELL detectors: Physics and potential applications

<u>A. Roy^{1,2}, L. Arazi¹, P. Bhattacharya², A. Breskin², S. Bressler²,</u>

E. Erdal², I. Israelashvili³, L. Moleri^{2,4}, D. Shaked-Renous², A. Tesi²

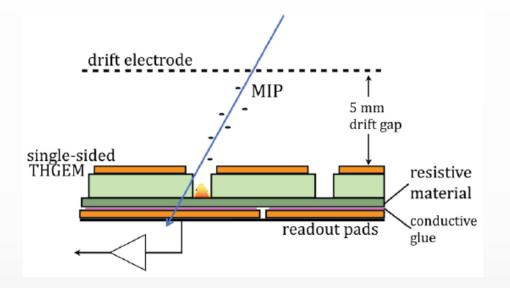
¹ Ben Gurion University

² Weizmann Institute of Science

³ Negev Nuclear Research Centre

⁴Technion - Israel Institute of Technology

Research performed at the Detectors Group at WIS Physics Faculty, under partial support of the Israel Science Foundation, I-CORE Program of the Planning and Budgeting Committee, common fund of the RD51 collaboration at CERN (the Sampling Calorimetry with Resistive Anode MPGDs (SCREAM)project)


The Resistive-Plate WELL (RPWELL): a robust single-element detector

- Single-sided THGEM
- Coupled to segmented readout through material of high bulk resistivity $(10^9 10^{12} \Omega cm)$
- Combining MPGD and RPC concepts

Features :

Discharge-free operation (Gain 10⁴ – 10⁷)

- \circ $\,$ With Ne- and Ar-based gas mixtures $\,$
- ο Broad dynamic range : MIPs (μ , π); x-rays, UVphotons
- \circ $\,$ Low avg. pad multiplicity at High efficiency
- Up to 50x50 cm² RPWELL prototypes tested
- o Gain stabilization mechanisms studied
- Moderate counting rates (~10⁴ Hz/cm²)
- $\circ~$ Sub-mm localization resolution (o \sim 280 $\mu m)$

2013 JINST 8 P11004 2016 JINST 11 P01005 2016 JINST 11 P09013 NIM A 845 (2017) 262 -265 2017 JINST 12 P10017 2017 JINST 12 P09036 arXiv:1904.05545v1

Motivation

Applications requiring cost-effective large-area detectors with moderate spatial resolution.

Single-stage **sampling elements** for (Semi) Digital Hadronic Calorimeter – **(S)DHCAL** - Up to 50x50 cm² RPWELL prototypes (Talk by Dan Shaked Renous). <u>arXiv:1904.05545v1</u>

Single-& double-stage **RPWELL-based detectors** - potential candidates for **UV-photon detection** @ **Room Temperature (RT)**

With high dynamic range and detection efficiency

Cryogenic RPWELL-based detectors at LXe & LAr Temperatures (T) →

- UV-photon detection in noble-liquid detectors with **Cryogenic Gaseous Photomultipliers (GPM)**; neutrino physics, Dark Matter & other rare-event searches, fast-neutron and Gamma-imaging.
- Charge multipliers in dual-phase noble-gas detectors: investigating possible operation at higher stable gain relative to LEM (Large Electron Multipliers).
- Immediate challenge \rightarrow Resistive materials of $\rho = 10^9 10^{12} \Omega$ -cm bulk resistivity @ LXe & LAr T.

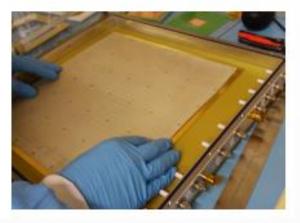
Single-stage sampling elements for (Semi) Digital Hadronic Calorimeter – (S)DHCAL

Ne/(5%CH_)

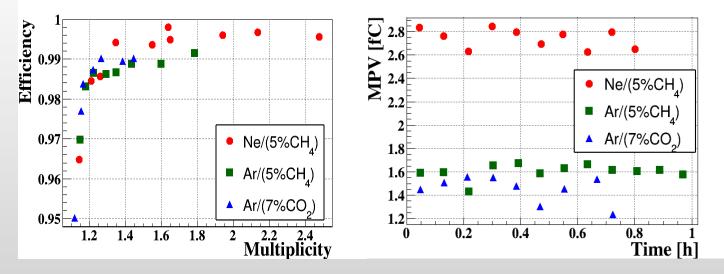
Ar/(5%CH_)

Ar/(7%CO_)

1200


1000

1400


1600

 ΔV_{RPWELL} [V]

1800

30x30 cm² RPWELL prototype

MPV [fC

10

800

Physics requirements:

- High detection efficiency
- Low pad multiplicity
- Moderate rate capability
- Stability over wide dynamic range

Reached DHCAL requirements with RPWELL

- > 98% efficiency
- Multiplicity 1.2
- ▶ No efficiency loss up to 10⁴ Hz/cm²
- <u>Stable operation</u> in high intensity pion beam – No discharge over 10⁸ events
- Total thickness ~ 5 mm w/o electronics
- Use of Argon gas Low cost, high # of PEs, low diffusion

Meet DHCAL requirement for a single sampling element

JINST (2016) P09013 ; JINST (2016) P01005

Double-stage **RPWELL**-based detectors -- potential candidates for **UV-photon detection @ RT**

RPWELL-based 2-stage UV-photon detector (RT)

MOTIVATION: enhanced Polya distributions \rightarrow increase efficiency for single photons (e.g. in RICH)

RT UV photon detection with MPGD for RICH Recent example : COMPASS RICH-1

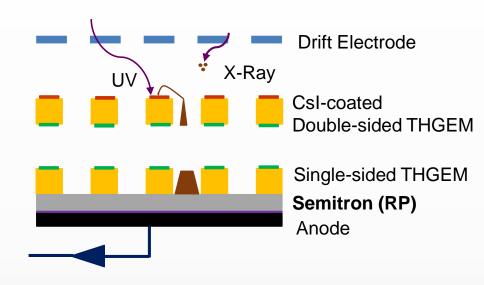
J. Agarwala et al., NIM A (2019), <u>https://doi.org/10.1016/j.nima.2019.01.058</u> (Micromegas +THGEM based)

 $P(N_e)$ – the probability that the avalanche has N_e electrons

Get Signal pulse-height distribution with **peaked Polya distribution**

- → Better signal-to-noise ratio (compared to an exponential distribution)
- → Increased single photon detection efficiency

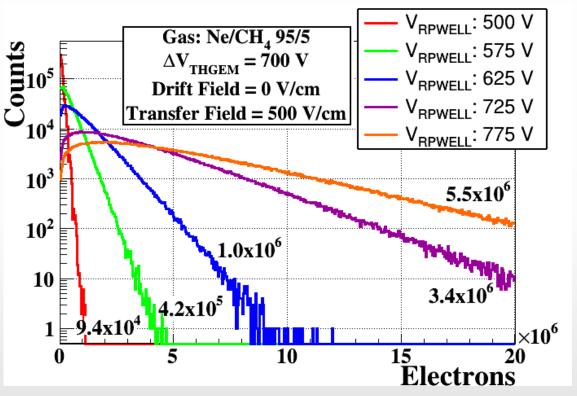
$$P(N_e) = \frac{(1+\theta)^{1+\theta}}{\Gamma(1+\theta)} \left(\frac{N_e}{N_e}\right)^{\theta} \exp\left[-(1+\theta)\frac{N_e}{N_e}\right]$$
(1)


where $\overline{N_e}$ is the mean gain and θ the Polya parameter which gives the relative gain variance f:

$$f = \left(\frac{\sigma_{N_e}}{\overline{N_e}}\right)^2 = \frac{1}{1+\theta}$$

(2)

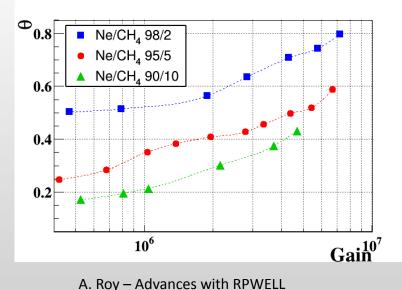
Byrne J, NIM A 74 (1969) 291-296

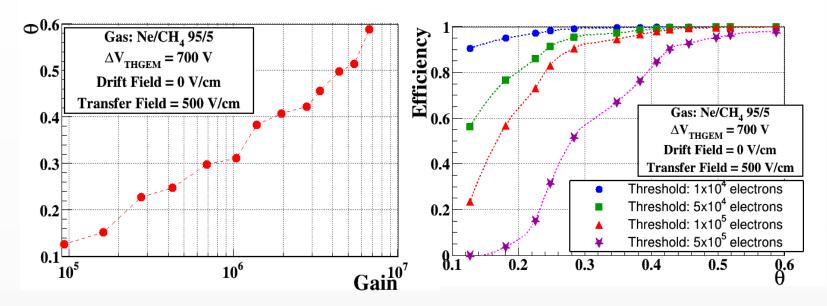

RPWELL-based 2-stage UV-photon detector (RT)

Detector parameters :

- > 5 mm Drift Gap; 2 mm Transfer gap
- 0.6 mm thick CsI-coated Doublesided THGEM
- > 0.4 thick Single-sided THGEM
- > 0.4 mm thick Semitron as RP
- Source: Hg Lamp
- → Gas: Ne/5%CH₄

Single Electron Spectrum Evolution, $\Delta V_{RP} = 500 - 775V$




- Double Stage RPWELL high dynamic range of gain
- > Clear Polya distribution, improves with higher gain
- Stable operation up to high gain

RPWELL–based 2-Stage UV-photon Detector (RT) - Effects of Gain and θ

- → The spectra were fitted with $P(N_e, \theta)$
- → Efficiency estimated numerically from the fitted spectrum
- → Electronics threshold ~10⁴ electrons → Detecting single electrons (θ ~ 0.2) with > 90% efficiency

Observed Gas Mixture dependence

- θ parameter vs Gain, Efficiency(e) & % (CH₄) in Ne
- **Observation** : Increase in $CH_4 \rightarrow Iower \theta$ at same gain
- Preliminary Stable UV detection (ε>90%) under 6 keV X-ray background.
- Ongoing measurements: lower gains, Ar-mixtures & background rate dependence

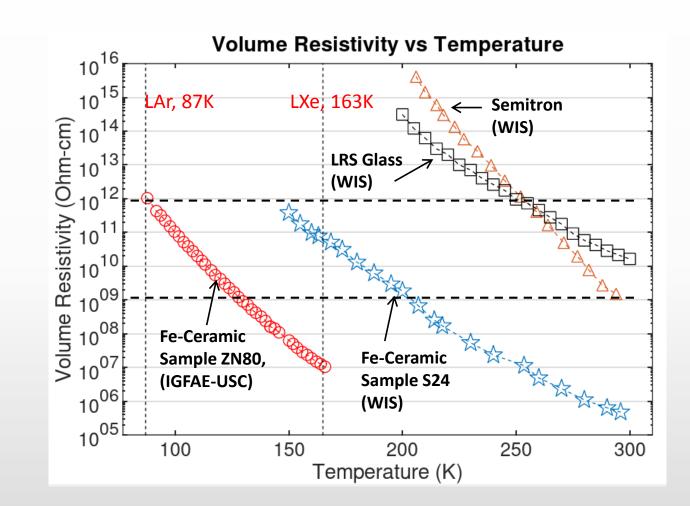
Cryogenic-RPWELL

In collaboration with :

Carlos Pecharromán (Instituto de Ciencia de Materiales de Madrid, ICMM) **Miguel** Morales (Instituto Galego de Fisica de Altas Enerxias – IGFAE-USC) and **Diego** Gonzalez Diaz (Instituto Galego de Fisica de Altas Enerxias – IGFAE-USC)

Thanks!

Challenges for low-T operation: Resistive-plate materials

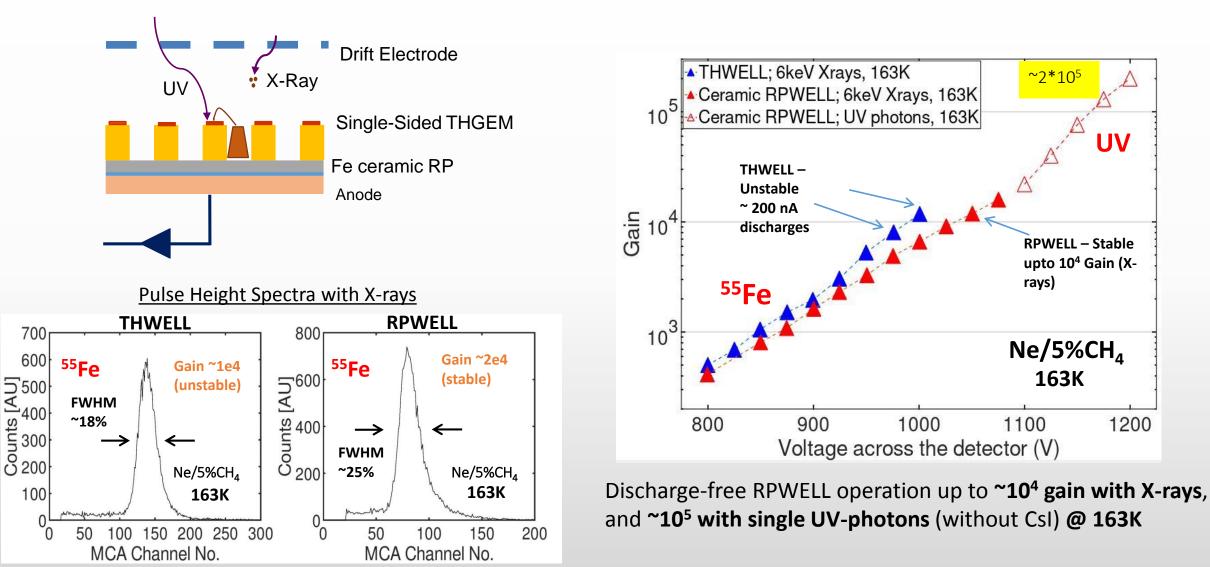

Material	Source	Volume Resistivity (ρ)@ RT	Resistivity as f(T)
			Quenches discharges completely at RT.
Semitron ESD 225			$oldsymbol{ ho}$ increases exponentially with decreasing T.
(Acetal based)	Quadrant Plastics USA	1.5x10 ⁹ Ω-cm	Investigated with small RPWELL prototypes
			Quenches discharges completely at RT.
Low Resistivity Silicate	Prof. Wang Yi; Tsinghua		$oldsymbol{ ho}$ increases exponentially with decreasing T.
(LRS) Glass	University, China	2x10 ¹⁰ Ω-cm	Investigated @ RT with up to 50x50 cm ² RPWELL
	C Pecharromán,		${f ho}$ increases exponentially with decreasing T but
	M Morales et al,		tunable.
Ferrite Ceramics	ICMM/CSIC, Spain	~10 ⁵ - 10 ⁷ Ω-cm.	Investigated in RPWELL down to 150K

Other Resistive materials tested → Fail to quench Discharges @ RT and/or low T) :

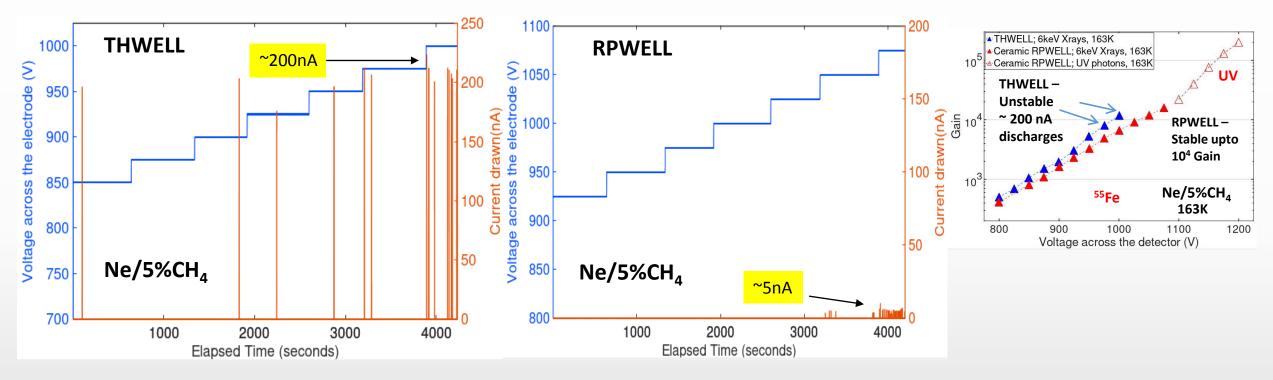
- <u>Tivar EC (UHMW-PE) & Tivar ESD (UHMW-PE)</u> -> Prof. Jerry Vavra, SLAC, ρ ~ 10⁶ 10⁷ Ω-cm, constant as f(T); ρ too low fails to quench discharges.
- 2. (PTFE + 1.5% Carbon) -> 3M, USA, $\rho \sim 10^7 10^8 \Omega$ -cm (function of Carbon content); constant as f(T); ρ too low fails to quench discharges.
- 3. <u>Araldite + Graphite</u> (Graphite % from 15-30 %) -> Fabricated @WIS, $\rho \sim 10^8 10^{14} \Omega$ -cm. Fails to quench discharges.
- <u>Si-based Ceramics</u> -> Prof. Lothar Naumann, HZDR, Germany, ρ ~10⁸ Ω-cm. ρ too low @ RT increases exponentially with decreasing T, unsuitable @low T

The Resistive Plate - Fe Ceramics

- ♦ Resistive materials range → $\rho \sim 10^9 10^{12} \Omega$ -cm (LXe & LAr T's)
- Semitron & LRS Glass (suitable @ RT) ρ >10¹⁴ Ω -cm around 200K.
- Fe-Ceramics robust ceramic composites with tunable electrical properties (C Pecharromán, M Morales et al; 2013 JINST 8 P01022)
- Sample S24 : ρ~10¹¹ Ω-cm @ LXe Temp (measured in controlled conditions).
- Preliminary ρ measurements down to LAr T. Promising results with ZN80
- Dedicated experiments ongoing @ IGFAE-USC, Spain and WIS to understand the behavior.


First Fe-Ceramic RPWELL @ LXe T

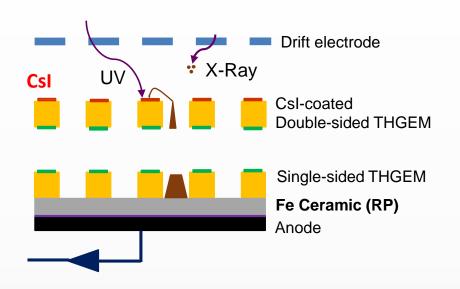
- First proof of discharge-free RPWELL detector operation at 163K !!
- Fe-Ceramic RPWELL tested in Ne/5%CH₄ at RT & low T in LN₂ + ethanol bath down to 160 K (ρ~ 10¹¹ Ω-cm)
- Detector investigated with X-rays & single UV-photons (RPWELL without/with Csl photocathode)



Fe Ceramic **RPWELL** compared to **THWELL** (same THGEM, but with standard Cu anode)

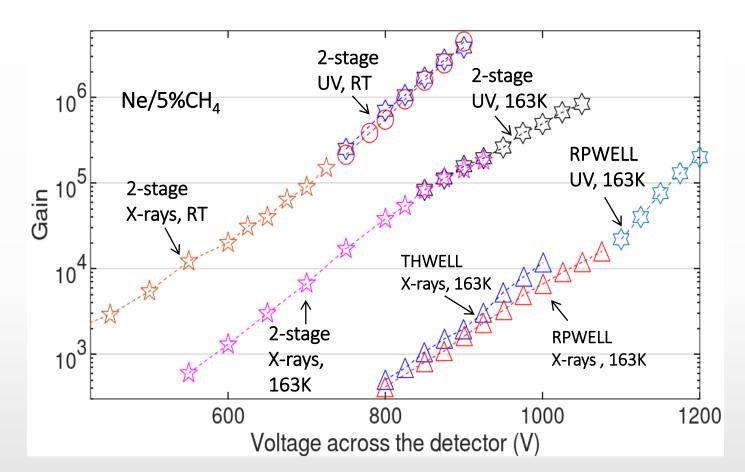
Single-stage Cryo-RPWELL – first results @ 163K

Cryo-RPWELL Results @ 163K – Discharge behavior

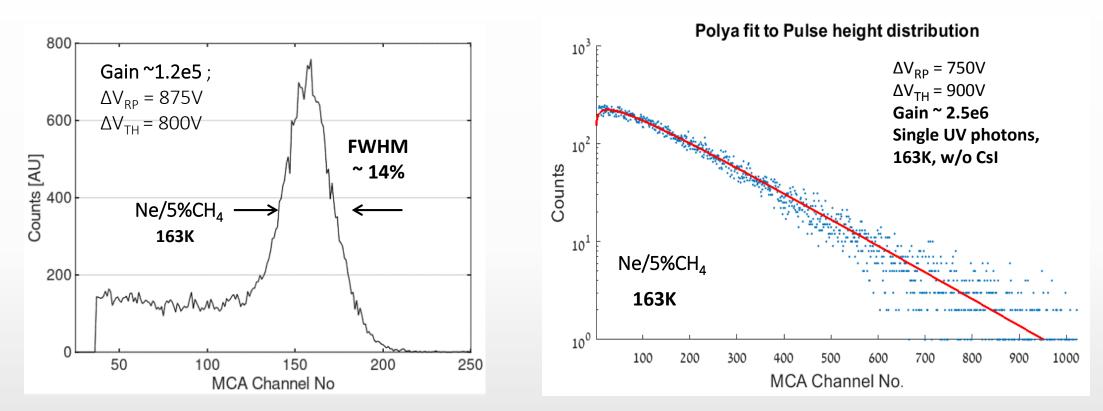


Discharge behavior at 163K :

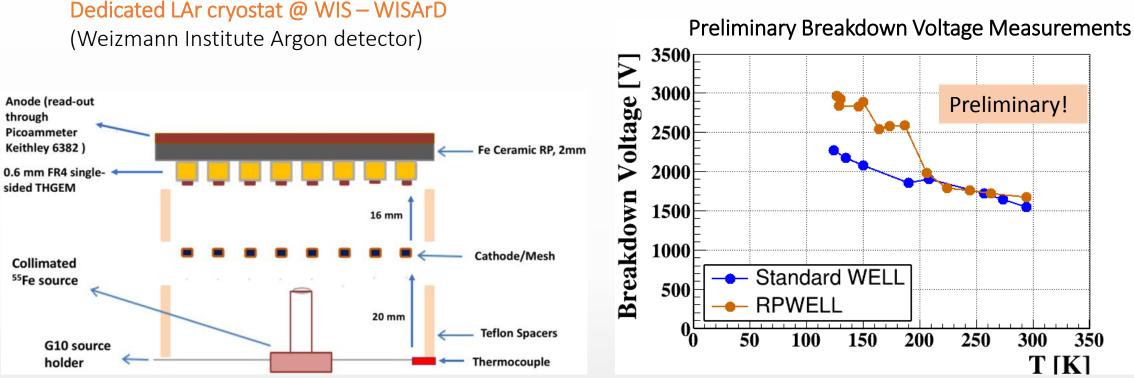
RPWELL \rightarrow Discharge-free operation upto 10⁴ gain. ~5nA discharges @ gain > 10⁴. THWELL \rightarrow ~200nA discharges! Onset of discharges around 10³ gain (850V). Unstable @ 10⁴ gain. Regular discharges


A. Roy – Advances with RPWELL

2-stage THGEM+ Cryo-RPWELL – first results @ 163K


Detector parameters :

- > 5 mm Drift gap; 2 mm Transfer gap
- 0.6 mm thick CsI-coated Double-sided THGEM
- > 0.4 thick Single-sided THGEM
- > 2.1 mm thick Fe ceramic as RP
- Source : H₂ discharge lamp


2-stage THGEM + Cryo-RPWELL (Ne/5%CH₄) \rightarrow Gain >10⁵ with X-rays @ RT and 163K Gain >10⁶ with single UV photons @ RT and Gain ~10⁶ @ 163K

2-stage THGEM+ Cryo-RPWELL – first results @ 163K

Pulse height spectra of double-stage detector with X-rays; T = 163K Clear Polya distributions obtained @ T = 163K with the double-stage detector with Single UV-photons **Cryo-RPWELL based noble liquid detectors** -- Investigating possible enhancement of maximum achievable stable detector gain in ultrapure Ar vapor

Cryo-RPWELL charge multipliers in dual-phase noble-gas detectors

Breakdown of Fe-Ceramic RPWELL vs THWELL (Fe-Ceramic -> $\rho \sim 10^6$ -10⁷ Ω-cm @ RT):

- 200-300K No difference in breakdown voltages -> Fe-Ceramic ρ inadequate to quench discharges!
- T< 200K --> ρ ~ 10⁹ Ω-cm → Effect of RP clearly seen. Higher RPWELL Breakdown Voltages.

A. Roy – Advances with RPWELL

MPGD 2019, La Rochelle May 5-10, 2019

Summary & Outlook

- Resistive material main challenge Fe-Ceramics suitable at 163K. Promising results for LAr (~87K). <u>Ongoing</u>: Detailed investigations @ IGFAE-USC and WIS
- > UV detectors @ RT \rightarrow 2-stage CsI-THGEM + RPWELL.

Clear Polya distributions in Ne/5% CH_4 .

Single-photon detection efficiency >90%.

➔ potential candidate for UV-photon detection.

<u>Ongoing</u> : efficiency vs background, Single-stage RPWELL, other gases & quenchers (Ar, CF4, etc).

- ➤ Cryogenic RPWELL @ 163K → Single-stage RPWELL (Ne/5%CH₄) Gain ~10⁴ with X-rays, and ~10⁵ with single UV-photons. Discharge quenching at 163K: RPWELL ~5nA vs THWELL ~200nA!
- ➢ RPWELL-based Cryogenic Gaseous <u>Photomultipliers</u> (GPM) @ 163K → 2-stage THGEM + RPWELL (Ne/5%CH₄) Gain >10⁵ with x-rays and ~10⁶ with single UV photons. Clear Polya distributions. <u>Ongoing</u>: 2-stage CsI-THGEM + RPWELL; 10cm diameter cryo-GPM; Photon Detection Efficiency.
- Cryo-RPWELL <u>charge multipliers</u> in dual-phase Ar detectors ->
 Preliminary studies highlight role of RP at low T
 <u>Ongoing</u>: Tuning resistivity to LAr-T; gain with single-stage RPWELL in dual-phase Ar.

Thanks!!