Neural Network Regression to Approximate Matrix Element Method Likelihoods

Charles Lewis Brigham Young University

10/11/2018

The ttH process q g QQQQQQQQ Ш g Q000000 b

- Directly measure the Higgs-top Yukawa coupling
- Separate the signal from the background with multivariate analysis

Matrix Element Method

- Powerful method for exploiting theoretical and experimental data for analysis
- ttH process: 8 final state particles for 22 free parameters
- Slow and computationally expensive

Neural Network

- Possible hyperparameters
 - Training set (size and sampling method)
 - Dropout
 - Number of layers
 - Number of nodes
 - The loss function
 - Number of training batches
 - The activation function
 - Early stopping patience

Evaluating the Model

- Plot the 1D normalized distributions over the parameters marginalized over remaining dimensions
- For each dimension, compute sum of the squared errors for the 20 bins

Parameter	Sum of the Squared Errors
p _1	0.285491
theta_1	0.572884
phi_1	0.046252
p _2	0.606082
theta_2	0.525307
phi_2	0.118454
pz_3	1.17777
Overall Test Statistic	0.476034

Evaluating the Model

What's Next

- Increase accuracy of current networks
- Add probability distribution functions
- Increase particles/parameters
- Incorporate the Matrix Element Method

