ATLAS Di-Higgs Search in ZZbb Channel

Hang Qi, Bing Li, Bing Zhou

Dartmouth College, University of Michigan

hang.qi@cern.ch

October 11, 2018

Hang Qi, Bing Li, Bing Zhou (Dartmouth Co

Motivation

- Search for Higgs self-coupling predicted by SM
- Search for new particles through Higgs (BSM)

•
$$V(\phi) = -\mu^2 \phi^* \phi + \frac{\lambda}{2} (\phi^* \phi)^2$$

• $\phi_0 = \mu / \sqrt{\lambda}$
• $\phi = \phi_0 + \frac{1}{2} (\phi_1 + i\phi_2)$
• $V(\phi) = V_0 + \frac{1}{2} (2\mu^2) \phi_1^2 + \frac{\mu^2}{\phi_0} \phi_1^3 + \dots$

Signal of Di-Higgs Production

End Product

Hang Qi, Bing Li, Bing Zhou (Dartmouth Co

• • • • • • • •

2

Advantage and Challenge of ZZ Production Channel Search

- Comparatively low background $(4I + b\bar{b})$
- Less dependence on high pile-up
- Statistical error dominates due to low signal
- Can be improved with high luminosity!
- Faithful reconstruction of $b\bar{b}$ jets at high luminosity is still challenging

- SM Higgs self-coupling
- SM Yukawa di-Higgs production
- BSM models with M_X from 260 to 5000 GeV

Current Observation

non-resonant limits:

Analysis	γγbb	$\gamma\gamma WW^*$	$bb\tau\tau$		bbbb	Combined
		Upper lin it on the cross section pb]				
Expected Observed	1.0 2.2	6.7 11	1.3 1.6		0.62 0.62	0.47 0.69
		Upper limit on the cro	ss section rel	tive to th	e SM predicti	on
Expected Observed	100 220	680 1150	130 160		63 63	48 70

Major Background

- SM production of ZZbb (VBS, triboson, loop-induced...)
- Four leptons from the backgrounds are mostly from on-shell Z boson (important for mass cut)

Mass cut (Higgs, Z, Z*)

- $\bullet \ 116.e3 > massZ1 > 66.e3$
- $\bullet \ 116.e3 > massZ2 > 5.e3$
- Ø Kinematic cuts (Pt, Eta)
 - Pt1 > 20.e3, Pt2 > 20.e3, Pt3 > 10.e3
 - abs(Eta) < 2.7
- individual lepton selection
 - type: ee $\mu\mu$, eeee, $\mu\mu\mu\mu$
 - isolation: min delta R for $l_1, l_2 > 0.1$, min delta R for $l_3, l_4 > 0.2$
- Iepton quad selection
 - min(abs(massZ1-Zmass) + abs(massZ2-Z*mass))

Kinematic Analysis

э

- Optimize selection design to increase sensitivity (signal to background ratio)
- Study multi-variable technique (BDT) to increase sensitivity
- Extend the analysis to ${\rm ee}/\mu\mu+\nu\nu$

- John, Alison. "Di-Higgs Production at the LHC: Current Status and Future Prospects." University of Chicago.
- Collaboration, The ATLAS. Observation of a New Particle in the Search for the Standard Model Higgs Boson with the ATLAS Detector at the LHC. [Astro-Ph/0005112] A Determination of the Hubble Constant from Cepheid Distances and a Model of the Local Peculiar Velocity Field, 31 Aug. 2012, arxiv.org/abs/1207.7214.
- Harold, Fox; LHCP. "Latest Results on Di-Higgs Production at ATLAS." Lancaster University.

The End

- ∢ ≣ →

Image: A image: A

æ