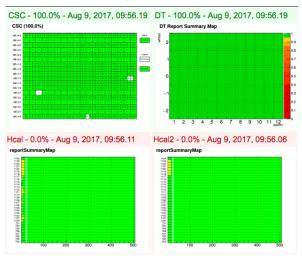


Machine Learning for Data Quality Management

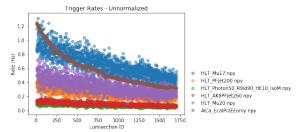
Monitoring Trigger Rates with Variational Autoencoders

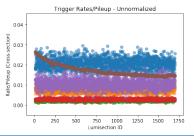
Madeline Hagen

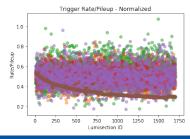


Data Quality Monitoring

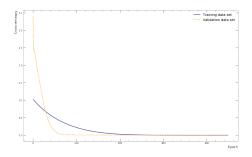
The goal of the HCAL MI group is to automate the monitoring system for early warning of detector issues



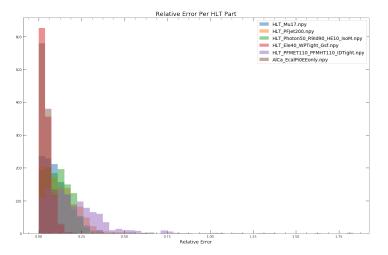

Trigger Rates as a Monitor


- Changes in the rate of data collection is a signal poor detector health
- Trained an autoencoder to learn and reproduce rates. The distance between the input and output is used to decipher between good and bad rates.

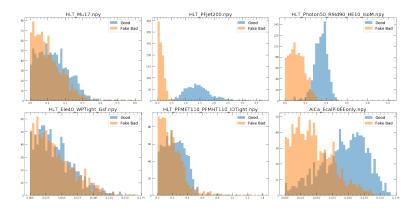
Inputs



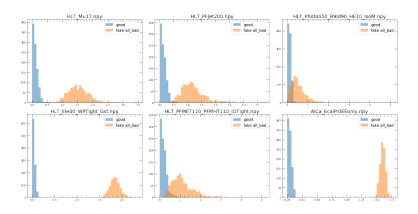
Architecture


Layer (type)	Output	Shape	Param #
input (InputLayer)	(None,	6)	0
middle (Dense)	(None,	5)	35
batch_normalization_33 (Batc	(None,	5)	20
encoded (Dense)	(None,	3)	18
batch_normalization_34 (Batc	(None,	3)	12
middle2 (Dense)	(None,	5)	20
batch_normalization_35 (Batc	(None,	5)	20
reconstructed (Dense)	(None,	6)	36
batch_normalization_36 (Batc	(None,	6)	24
Total params: 185 Trainable params: 147			

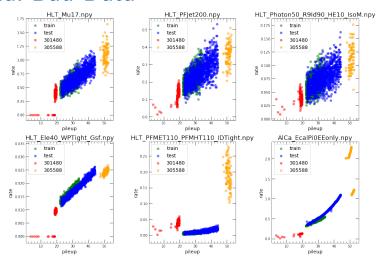
Non-trainable params: 38



Training Data - Error



Fake Bad Data - One Rate



Fake Bad Data - All Rates



Real Bad Data

Real Bad Data

Roadblocks

- Normalization Tried 7 different methods
- Architecture For each normalization, 5-10 architectures were tried
- Used these to narrow in on current method

Next Steps

- Challenge the autoencoder more HLT parts, varying input shapes
- Prediction Can the autoencoder predict the next few rates to raise alarm of mid-run issues

