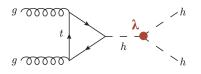
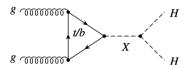
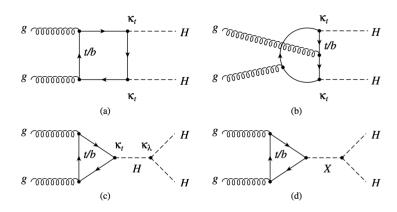
Study of di-Higgs production through ZZbb detection with the ATLAS experiment

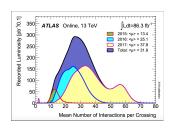

Hang Qi, Bing Li, Bing Zhou

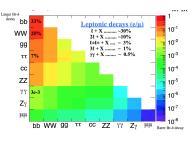

Dartmouth College, University of Michigan hang.qi@cern.ch

November 8, 2018

Motivation


- Search for Higgs self-coupling predicted by SM
- Search for new particles through di-Higgs production


Di-Higgs Production diagrams at the LHC


SM total cross section (up to NLO): 33 fb

Advantage and Challenge of ZZ Production Channel Search

- ullet Comparatively low background (4l + $bar{b}$)
- Less dependence on high pile-up
- Statistical error dominates due to low signal
- Benefits a lot with higher integrated luminosity in the future (current aim: $3000 \ fb^{-1}$, potential increase to $4000 \ fb^{-1}$
- ullet Faithful reconstruction of $bar{b}$ jets at high luminosity is still challenging

Current Study Objective and Methods

- Design the cuts based on kinematic distributions, and cut events where background dominates
- ① Use MC samples of signal and major backgrounds at $\sqrt{s}=13$ TeV to obtain shape of signal v.s. background
- Out events where background dominates
- Study the detection sensitivity by estimate signal and background ratio

MC Sample and important parameters

- NLO SM di-Higgs production (Yukawa + self-coupling)
- Higgs and SM ZZbb background sample

	LO Signal	NLO Signal	SM ZZbb bg	ggF Higgs bg	VBS Higgs bg	ZH Higgs bg	WH Higgs bg	ttH Higgs bg
luminosity (fb^-1)	3000	3000	3000	3000	3000	3000	3000	3000
cross section (fb)	14.4023	33	66.70175	48580	3782	883.9	1373	507.1
branching ratio	0.0000722	0.0000722	1	0.00015987	0.000275	0.000275	0.000275	0.000275
NTotal	300000	3262.016	5200000	8753560	765967	150000	150000	137637.2

Table: Signal parameter source: the generator. Background parameter source: CERN Yellow Report.

Major Background

- Single Higgs (4l+bb from ttH production, significantly overlap with di-Higgs signal)
- SM production of ZZbb (VBS, triboson, loop-induced...)

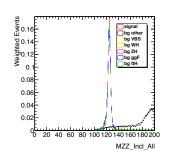
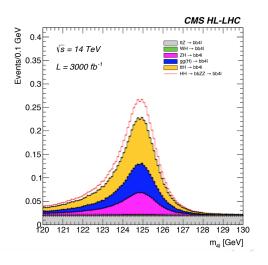



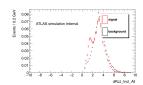
Figure: shape comparison between signal v. different sources of background

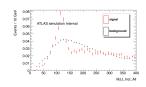
Higgs background analysis: Comparison with CMS

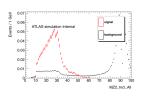
Signal v.s. background shape with preliminary cuts

All Channels

Lepton Two or more same flavour leptons


Jets Two or more jets with valid Pt (Pt >-999e3)


 M_{Z1} 66GeV < M_{Z1} < 116GeV


 M_{Z2} 5GeV $< M_{Z2}$

lepton min $\delta \eta$ $|\delta \eta| < 2$

Lepton Quad Selection minimize $M_{Z1} - 91 \text{GeV} + M_{ZZ} - 125 \text{GeV}$

Selection Design

All Channels

Lepton Two or more same flavour leptons

Jets Two or more jets with valid Pt (Pt >-999e3)

 $egin{array}{lll} M_{Z1} & 66 {
m GeV} < M_{Z1} < 116 {
m GeV} \\ M_{Z2} & 5 {
m GeV} < M_{Z2} < 50 {
m GeV} \\ M_{jj} & 75 {
m GeV} < M_{jj} < 140 {
m GeV} \\ \end{array}$

Jet Pt Veto No lead jet with Pt < 60GeV

Z boson Pt Veto No Z1 boson with Pt < 80 GeV or Pt > 280 GeV

ZZ Higgs Pt Veto $\,\,\,\,\,\,\,\,\,\,\,$ no Higgs from jets with Pt < 100 GeV

JJ Higgs Pt Veto $\,\,\,\,\,\,\,\,\,\,$ no Higgs from Z bosons with Pt < 100 GeV

 δRjj $|\delta Rjj| < 2$

minimum lepton $\delta \eta = \left| \delta \eta II \right| < 2$

Next Steps

- further improve the cut-based analysis
- use MVA to improve the detection sensitivity if time allow

The End