Measurement of the CP violation parameter A_{Γ} with $D^0 \to \pi^-\pi^+\pi^+\pi^-$ decays

Lauren Douglas, Lars Eklund, Michael Alexander
University of Glasgow

LHCb UK

Motivation

- CPV in charm sector predicted by the standard model to be very small, and has not yet been observed.
- Low SM background environment for new physics.
- A_{Γ} measures the time-dependent CPV for a D^0 decaying to a CP eigenstate final state f.
 - SM expectations: $A_{\Gamma} < O(10^{-4})$
 - High precision required.
- Multi body decays allow for CP asymmetries to be measured across the phase space of the decay.
- Singly cabibbo suppressed decays like $D^0 \to \pi^-\pi^+\pi^+\pi^-$ are especially sensitive to new physics.
- This analysis will be the first measurement of A_{Γ} in a four-body decay mode

A_{Γ}

 Violation of flavour quantum numbers by the weak interaction => mass eigenstates of neutral charmed mesons are linear combinations of flavour eigenstates

Mixing parameters
$$|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D^0}\rangle$$

$$x \equiv \frac{m_1 - m_2}{\Gamma}, y \equiv \frac{\Gamma_1 - \Gamma_2}{\Gamma}, \phi = \arg\left(\frac{q}{p}\frac{\overline{A_f}}{A_f}\right)$$

Due to slow mixing rate of charm mesons $(x, y \sim 10^{-2})$ time dependent CP asymmetry can be approximated at first order as the sum of two terms:

$$A_{CP}(t) = \frac{\Gamma(D^{0}(t) \to f) - \Gamma(\overline{D^{0}}(t) \to f)}{\Gamma(D^{0}(t) \to f) + \Gamma(\overline{D^{0}}(t) \to f)} \approx A_{CP}^{dir}(f) + A_{CP}^{ind}(f) \frac{t}{\tau_{D}}$$

$$A_{\Gamma}$$

$$A_{CP}(t) = \frac{\Gamma \left(D^0(t) \to f\right) - \Gamma(\overline{D^0}(t) \to f)}{\Gamma(D^0(t) \to f) + \Gamma(\overline{D^0}(t) \to f)} \approx A_{CP}^{dir}(f) + \underbrace{A_{CP}^{ind}(f)}_{\tau_D} \frac{t}{\tau_D}$$

$$A_{CP}^{ind}(f) = \frac{\eta_{CP}}{2} \left[y \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) \cos \phi - x \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \sin \phi \right]$$

$$\text{CPV in mixing: } \left| \frac{q}{p} \right| \neq 1 \quad \text{CPV in interference: } \phi \neq 0, \pi$$

• A_{Γ} is defined as the asymmetry between D^0 and D^0 effective lifetimes. In the limit of small CP violation in the decay:

$$A_{\Gamma} \equiv \frac{\widehat{\Gamma}(D^0 \to f) - \widehat{\Gamma}\left(\overline{D^0} \to f\right)}{\widehat{\Gamma}(D^0 \to f) + \widehat{\Gamma}\left(\overline{D^0} \to f\right)} \approx -A_{CP}^{ind}(f) \qquad \frac{1}{\widehat{\Gamma}} = \widehat{\tau} = \frac{\int t\Gamma(t)dt}{\int \Gamma(t)dt}$$

• Thus $A_{\Gamma} \neq 0$ indicates indirect CPV in the charm sector, sensitive to both mixing and interference.

A_{Γ}

- A_{Γ} is considered universal for all decays with CP-even final states, in approximation.
- $D^0 \to \pi^+\pi^-\pi^+\pi^-$ is a final state with **mixed** CP content
 - Measured A_{Γ} picks up a factor of $(2F_{+}-1)$ with respect to pure CP-even or odd final states. (*Phys. Rev.* **D 91** (2015) 094032)
- $F_{+}^{4\pi} = (0.769 \pm 0.021 \pm 0.010)$
 - CLEO measured result (JHEP01 (2018) 144)
 - Corresponds to scale factor applied to asymmetry of 1.859

Measuring A_{Γ}

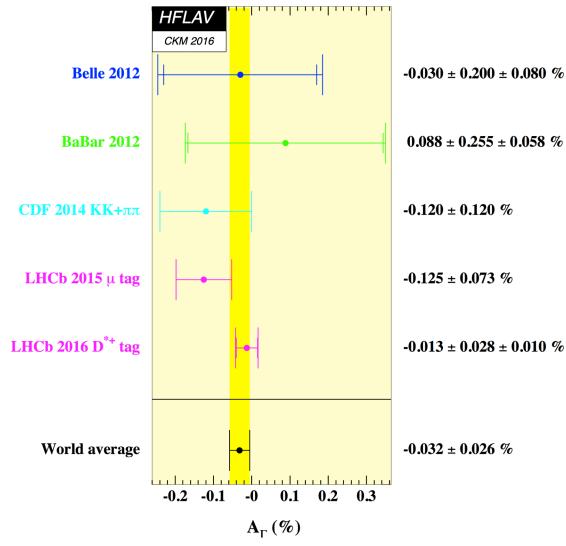
- Measuring the effective lifetimes requires precise knowledge of their time-dependent reconstruction efficiency.
- Challenging to achieve at hadron colliders given the decay-time-related requirements of the trigger used.
- Instead measure the raw asymmetry between the number of reconstructed D^0 and $\overline{D^0}$ mesons.

$$A_{Raw}(t) = \frac{dN(D^0, t) - dN(\overline{D^0}, t)}{dN(D^0, t) + dN(\overline{D^0}, t)} \approx A_{CP}(t) + A_D(t) + A_P$$

$$A_{CP}^{dir} - A_{\Gamma} \frac{t}{\tau_{D^0}}$$

 A_{Γ} extracted as –ve the slope

Detector induced charge asymmetry. Possible time dependence mimicking fake slope


Time-independent production asymmetry

- $A_D(t)$ depends on time due to correlations between the D0 decay time and the π_s momentum used to infer the D0 flavour.
- Bias to A_{Γ} as a result cannot be neglected.

Method first utilised in 2-body A_{Γ} analysis (Phys. Rev. Lett. 118, 261803 (2017))

Current Experimental Status

- World best measurements of the parameter A_{Γ} with ${\bf D}^0 \to K^+K^-$ and ${\bf D}^0 \to \pi^+\pi^-$ decays.
- Average is compatible with zero within 3×10^{-4} , dominated by LHCb two-body run 1 measurement.

Plot obtained from HFLAV. Eur. Phys. J. C77 (2017) 895


Analysis Method

- Phase space integrated initially.
- Strong decays $D^{*+} \to D^0 \pi_s^+ (D^{*-} \to \overline{D}^0 \pi_s^-)$ used for D^0 flavour tagging.
- High statistics $D^0 \to K^-\pi^+\pi^+\pi^-$ control channel used to validate procedure.
 - $A_{\Gamma}(D^0 \to K^-\pi^+\pi^+\pi^-)$ should be zero in the absence of any detector effects.
- $A_{\Gamma}(D^0 \to \pi^-\pi^+\pi^+\pi^-)$ blinded.
- Full run 1 and run 2 data measurement intended.
 - Today presenting preliminary results up to 2016 (control) and 2012 (signal)
- Samples are split by year and magnet polarity.
- Each sample is split into 30 approximately equally populated decay time bins to 6.0 ps.
- A_{Γ} is measured through a linear fit to $A_{CP}(t)$

Secondary decays

- Source of background
- $D^{*+} \rightarrow D^0 \pi^+$ decays have two components:
 - Prompt: D^* coming from the primary vertex of an interaction

• Secondary: D^* coming from a B hadron decay ($B \to D^*X$)

- Secondaries contribute to A_raw(t) because the fraction of secondary decays depends strongly on reconstructed decay time.
- Systematic uncertainty must be applied if not accounted for.

Data sample

- No constraint that D*+ be produced in the PV
- L0: D⁰ TOS LOHadronDecision or D*+TIS LOGlobal
 - No requirements on π_s^+

Run 1:

Stripping 21r1: DstarPromptWithD02HHHHLine

D⁰ TOS HItTrackAllLODecision

4Pi:

 D^{*+} TOS Hlt2CharmHadD02HHHH_4piDecision OR D^{*+} TOS Hlt2CharmHadD02HHXDst_hhXDecision K3Pi:

D*+ TOS Hlt2CharmHadD02HHHH(Dstr_K3pi) OR Hlt2CharmHadD02HHXDst_hhXDecision

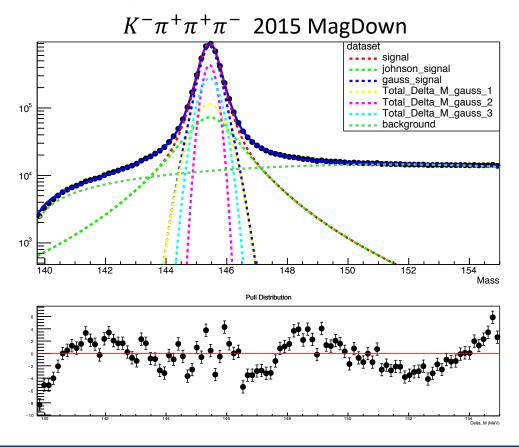
Run 2:

Hlt2CharmHadDstp2D0Pip_D02PimPipPimPipTurbo Hlt2CharmHadDstp2D0Pip_D02KmPipPimPipTurbo

HLT1: D0 TOS for one or both:

Hlt1TrackMVA OR Hlt1TwoTrackMVA

Further offline cuts

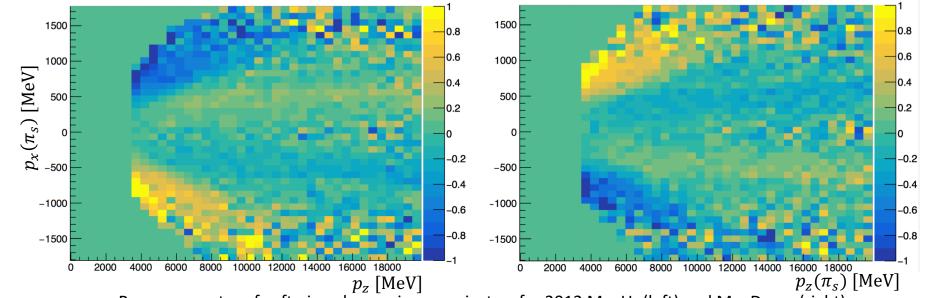

- $\chi_{IP}^2 < 9$ to suppress secondary decays.
 - χ_{IP}^2 : difference between χ^2 of PV fit with/without including particle/track in fit.
 - Particles that do not come from the PV have a larger χ_{IP}^2 on average.
- $p_{\pi_s} > 3000 \text{ MeV}$
- $(139.57 < \Delta m (m(D^{*+}) m(D^{0})) < 155.00) \text{ MeV}$
- $(1845 < m(D^0) < 1885)$ MeV
- $\chi_{FD}^2 > 50$

Fit Model

- Signal: Johnson SU-distribution in Δm [$m(D^*)-m(D)$] + 3 gaussians
- Random pion background:

•
$$\Delta m : f(\Delta m) = (\sqrt{\Delta m - \Delta m_{\pi}})[1 + \alpha(\Delta m - m_{\pi}) + \beta(\Delta m - \Delta m_{\pi})^2]$$

WIP


Momentum charge asymmetries

$$A_{Raw}(t) = \frac{dN(D^0, t) - dN(\overline{D^0}, t)}{dN(D^0, t) + dN(\overline{D^0}, t)} \approx A_{CP}^{direct} - A_{\Gamma} \frac{t}{\tau_{D^0}} + A_{D}(t) + A_{P}$$

LHCb detector acceptance not CP-symmetric over the whole space

In reconstruction and selection of the π_s charge asymmetries are present and strongly depend on the π_s momentum.

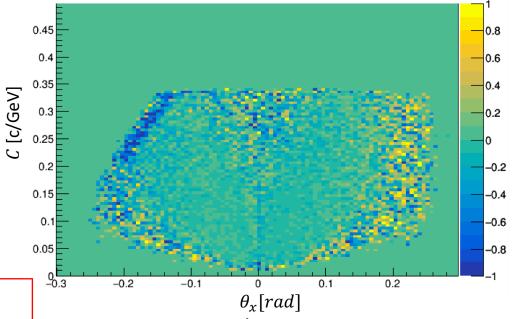
Averaging between magnet up and magnet down polarities does not necessarily eliminate this problem with the degree of precision needed due to variation of run conditions over time.

Reweighting

To restore the CP symmetry a correction is applied in time-integrated $(C, q_{\pi_s}\theta_x, \theta_y)$ distribution, where C is proportional to track curvature in the magnetic field, q_{π_s} is the charge of the soft pion, and θ_x θ_y are the pion emission angles in the bending and vertical

planes, respectively.

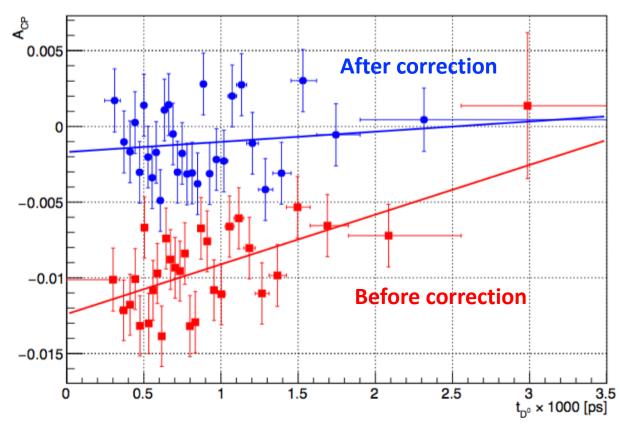
$$C = \frac{1}{\sqrt{p_x^2 + p_z^2}}$$


$$\theta_x = \arctan\left(\frac{p_x}{p_z}\right)$$

$$\theta_y = \arctan\left(\frac{p_y}{p_z}\right)$$

Reweigh the 3D momentum distributions of p+ and pi- to make them equal

$$N^+(C, \theta_x, \theta_y) = N^-(C, -\theta_x, \theta_y)$$

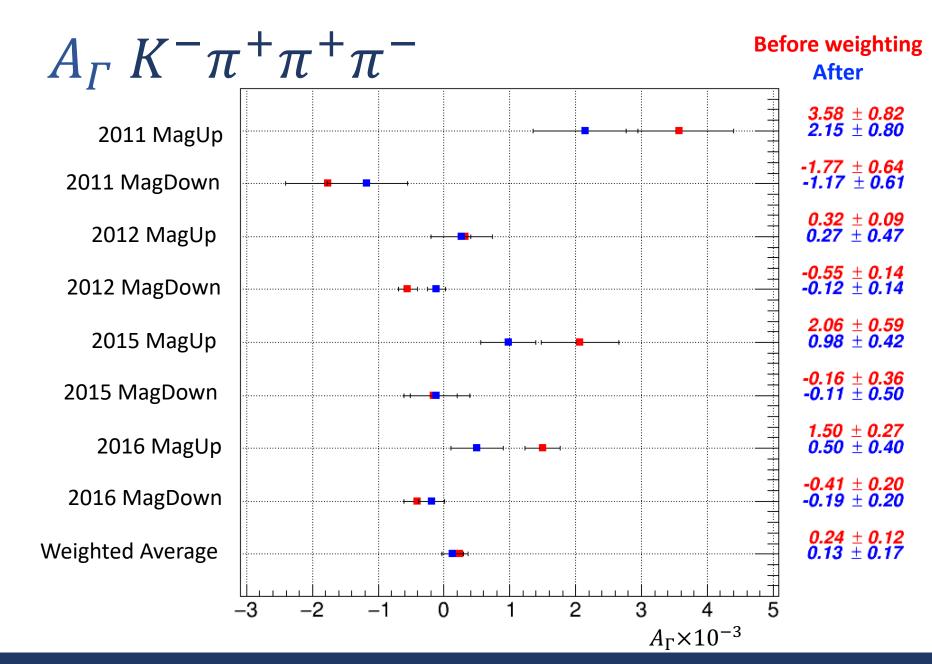

$$\sqrt{\omega_{i,j,k}} = \sqrt{rac{\Sigma_{lpha} n_{i,-j,k}^{lpha^+}}{\Sigma_{lpha} n_{i,-,k}^{lpha^-}}} \quad ext{and} \quad \sqrt{
u_{i,j,k}} = \sqrt{rac{\Sigma_{lpha} n_{i,-j,k}^{lpha^-}}{\Sigma_{lpha} n_{i,-,k}^{lpha^+}}}$$

Time-integrated raw asymmetry in $(C, q_{\pi_s}\theta_x)$ of 2011 MagUp

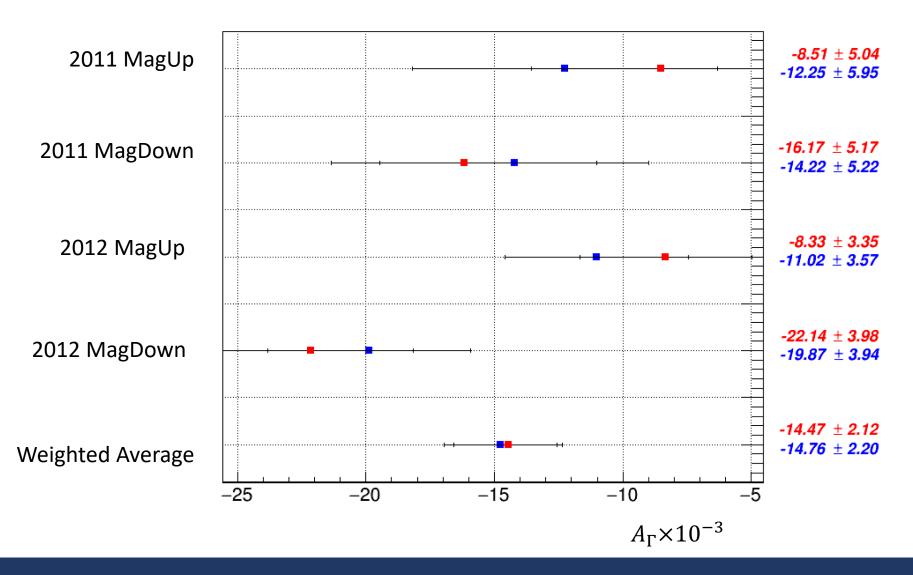
Reweighting

 A_{Γ} is inconsistent with zero before weighting, and consistent after weighting.

After reweighting both the intercept and slope become consistent with zero demonstrating CP symmetry has been restored


Magdown 2012

Before:


$$A_{\Gamma}^{K3\pi} = -(0.55 \pm 0.14) \times 10^{-3}$$

After:

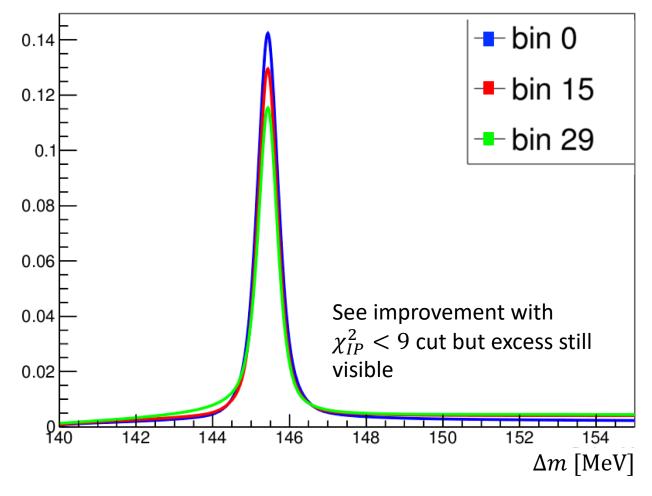
$$A_T^{K3\pi} = -(0.12 \pm 0.14) \times 10^{-3}$$

$A_{\Gamma} \pi^{-} \pi^{+} \pi^{+} \pi^{-}$ (blinded) Scale factor applied

Systematics

Possible sources of systematic uncertainty to be considered:

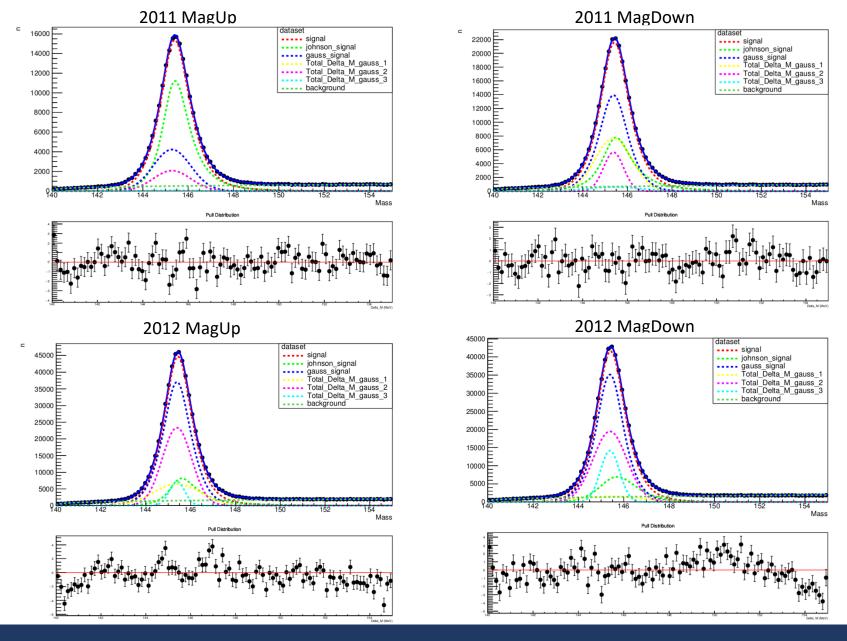
- Contribution of secondaries
 - Suppressed by cut on χ_{IP}^2 but some may still be present
- Reweighting procedure
- Uncertainty on F_+
 - Should translate to uncertainty of relative size on A_{Γ}
- Efficiency as function of phase space

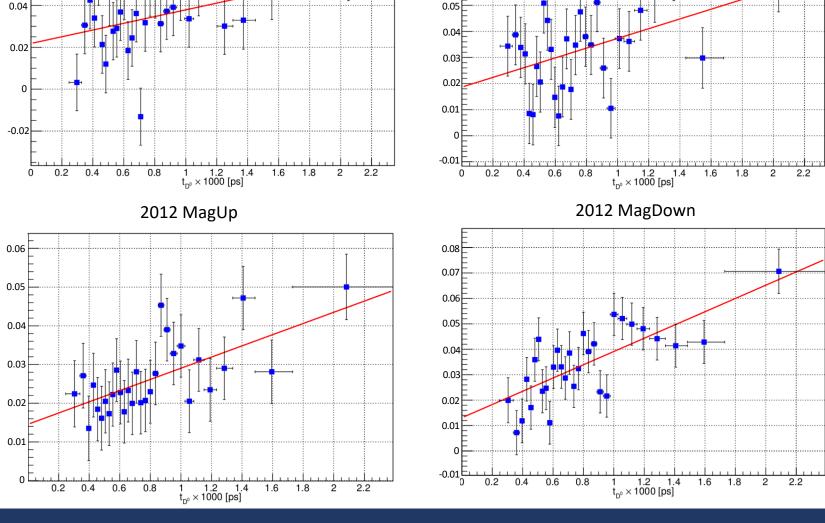

Conclusion

- A_{Γ} is a sensitive probe of CP violation in the charm sector.
- Preliminary results of A_{Γ} ($\pi^-\pi^+\pi^+\pi^-$) presented for run 1.
- Expected uncertaint of ~ 10^{-3} on A_{Γ} with full dataset.

Backup

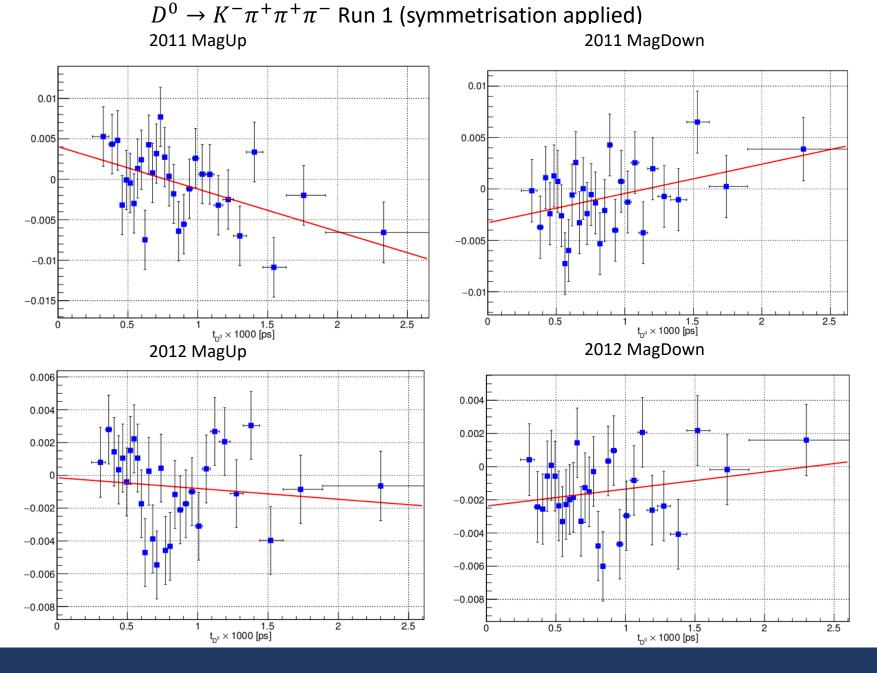
DTF and Δm

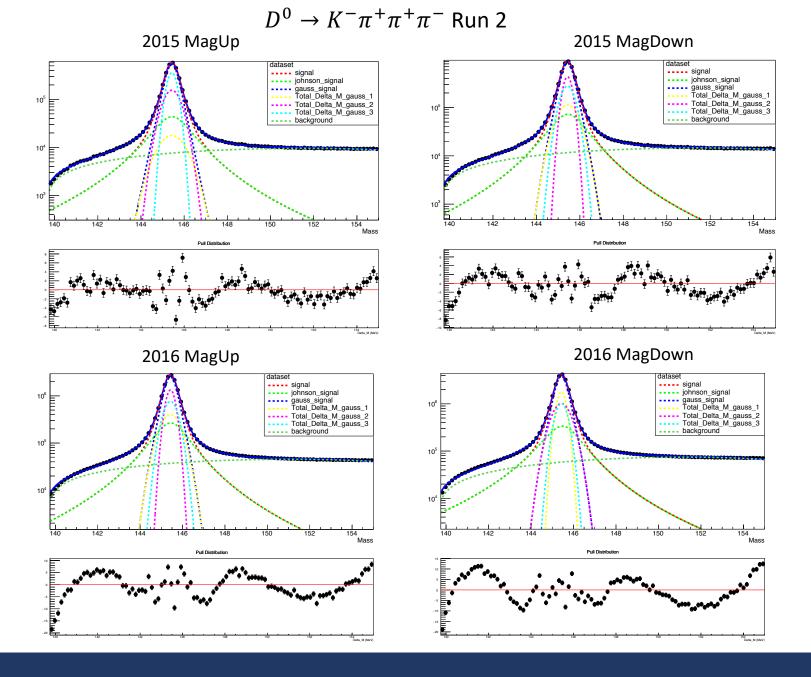

$$D^0 \to K^- \pi^+ \pi^+ \pi^-$$
 2015 MagUp

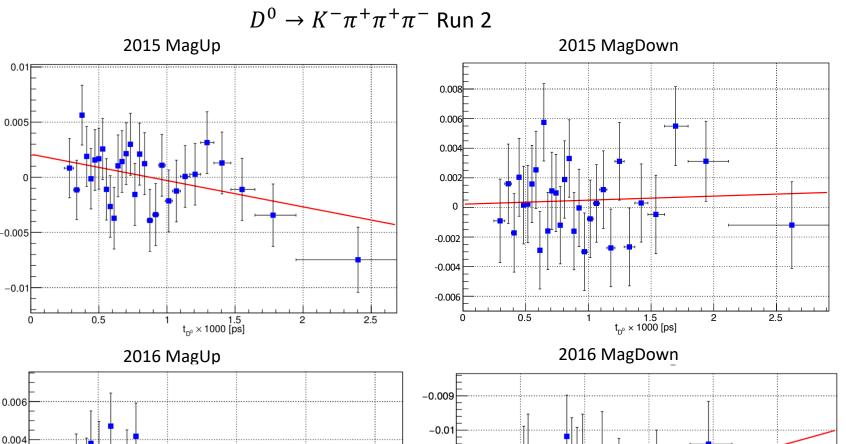

Decay Tree Fitter

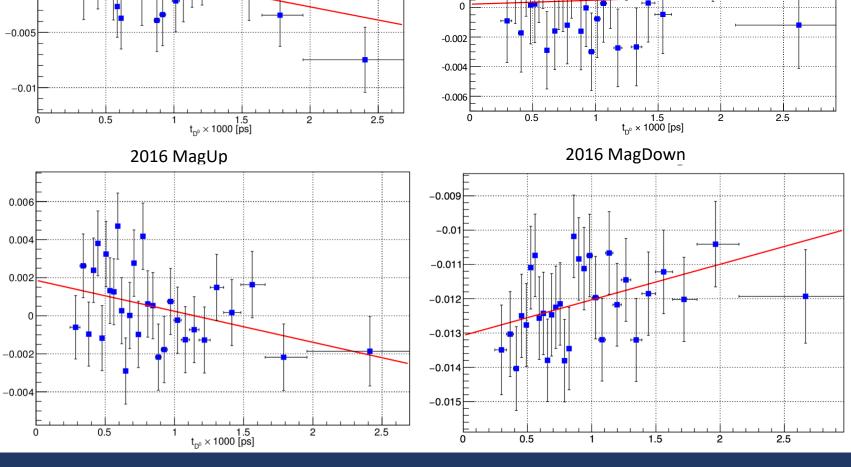
- Forces D*+ DV to coincide with the PV
- Produces a time-dependent artificial tail in Δm due to secondary decays
- Excess is largest in highest decay time bin
- DTF is not used in this analysis

$D^0 \rightarrow \pi^-\pi^+\pi^+\pi^-$ Run 1


$D^0 \to \pi^- \pi^+ \pi^+ \pi^-$ Run 1 (Slope and Intercept Blinded) 2011 MagUp 2011 MagDown 0.07 0.06 0.05 0.04 0.03 0.02 0.01 t_{D^0} × 1000 [ps] 1.6 2012 MagDown 2012 MagUp 0.08




0.08


0.06

$D^0 \rightarrow K^-\pi^+\pi^+\pi^-$ Run 1 2011 MagUp 2011 MagDown dataset ---- signal ighta iphnson_signal gauss_signal Total_Delta_M_gauss_1 Total_Delta_M_gauss_2 Total_Delta_M_gauss_3 ---- johnson_signal gauss_signal Total_Delta_M_gauss_1 Total_Delta_M_gauss_2 Total_Delta_M_gauss_3 200 ---- background 150 100 100 Pull Distribution 2012 MagDown 2012 MagUp signal 600 ---- johnson_signal 600 johnson_signal gauss_signal Total_Delta_M_gauss_1 gauss_signal gauss_signal Total_Delta_M_gauss_1 Total_Delta_M_gauss_3 Total_Delta_M_gauss_3 background 500 500 Total Delta M gauss 2 Total Delta M gauss 3 400 400 300 300 200 200 100 100 Mass

