
Exploring Cloudflare Workers
Harris Hancock - Systems Engineer, Cloudflare Workers

Mission: To help build a better internet.

We provide performance, security, reliability, and insight for web properties.

We optimize for latency.

180+ points of presence

Visitor CF PoP (edge servers)
Origin

GET /cat-picture.jpeg

Access Cache...

Conceptually, Cloudflare is a pipeline of (lots of) features

How do we extend the pipeline?

DDoS
mitigation

Minification

Cloudflare implemented all features

A fixed-function edge network

Access Cache...

How do we extend the pipeline?

DDoS
mitigation

Minification

Customers can write their own
features

A programmable edge network

Customers provide the logic,
we provide the platform.

Previously... Ideally...

That’s Serverless!

A misnomer: servers are involved. You just don’t worry about them.

Serverless infrastructure abstracts servers away from dev perspective.

Includes functions, storage, database services, and more.

Serverless infrastructure should …

- Require no maintenance
- Bill on usage, not idle time
- Be globally distributed (no regions!)

Access Cache...

So these are containers, am I right?

DDoS
mitigation

Minification

No. In this case, containers don’t scale.

Scalability can mean...

Traffic (requests)
Easy: More locations = more capacity

Tenants (apps)
Hard: Every tenant in every location.

Some locations are small!

Needed:
> 100x Efficiency

Efficiency...

App Code Footprint
VM: 10GB
Container: 100MB
Needed: < 1MB

Baseline Memory Usage
VM: 1GB
Container: 100MB
Needed: < 5MB

Context Switching
VM: low
Container: medium
Needed: extreme

Startup Time
VM: 10s
Container: 500ms
Needed: < 5ms

This technology already exists!

Browsers are optimized for...

Small downloads

Fast startup

Many tabs and frames

Secure Isolation

V8 gives us...

Isolates: tiny sandboxes in a single process
 Named after V8 type: class v8::Isolate

Standard JavaScript builtins:
 async/await, Date, RegExp classes, much more

Application

Libraries

Language Runtime

Operating System

Hardware (virtualized)

Application

Libraries

Language Runtime

Operating System

Hardware

Application
Uncommon Libraries

Web Platform APIs

Language Runtime

Operating System

Hardware

VMs Containers Isolates

Provided by host (shared) Provided by guest

Web Platform APIs

W3C/WHATWG standards for:

- HTTP servers (Service Worker)
- HTTP clients (Fetch)
- URL manipulation
- Text encoding
- Stream processing
- Cryptography
- and more

addEventListener("fetch", event => {
 event.respondWith(handle(event.request))
}

async function handle(request) {
 // Redirect .jpeg requests to static file
server.
 let url = new URL(request.url)
 if (url.pathname.endsWith(".jpeg")) {
 url.host = "static.example.com"
 return fetch(url, request)
 } else {
 return fetch(request)
 }
}

Not Only JavaScript

Any language that compiles to JavaScript:

V8 supports WebAssembly, too:

TypeScript is often a better choice for large projects.

Useful for computationally expensive tasks.

Or codebases you can’t/won’t rewrite in JS.

Or just because you want to.

Application
Libraries

Language Runtime
API Bindings

Web Platform APIs

Language Runtime

Operating System

Hardware

WebAssembly

Application
Uncommon Libraries

Web Platform APIs

Language Runtime

Operating System

Hardware

Isolates

Missing a way to share common runtimes.

Is V8 secure enough for servers?

Relatively more bugs than VMs.

Reasons:
- Larger attack surface (Bad)
- More research (Good)

- Bug bounty
- Fuzzing
- Import target

Nothing is “secure”

Security is Risk Management

VS

Browser Server
Install updates fast. Install updates faster.

Use separate profiles for
trusted vs “suspicious” sites.

Use separate processes for
trusted vs “suspicious” tenants.

VS

Browser

...can’t, privacy violation.

Server

Store all scripts ever loaded for
forensic purposes. No eval().

Watch for segfaults, inspect
scripts that cause them.

Worker Functions are Stateless

Pros: Cons:
Difficult to implement rate
limiting. Need global counter.

Also queues, locks.

Resilient. Can be reloaded with
no noticeable effects.

Horizontally scalable.

Future: Stateful “object” Workers: code + state that migrates.

Present: Workers KV: a distributed key/value store. Last write wins.

Summary

Cloudflare Workers...

Makes Cloudflare’s edge network user-programmable.

Optimized for latency: < 5ms cold starts, anywhere on Earth.

Resources

We have a free tier, go have fun! https://workers.cloudflare.com/

Also, documentation: https://workers.cloudflare.com/docs/

And you can email me: harris at cloudflare

https://workers.cloudflare.com/
https://workers.cloudflare.com/docs/

