ATLAS Containers

Lukas Heinrich 2019/06/04 - CVMFS Workshop

HEP Computing — In a Nutshell

Foundational Principle: repeated experiment, i.e. proton collisions

- each event is independent of the other
- to zero-th order HEP computing is
 - embarassingly parallel great for distributed computing

HEP Computing — In a Nutshell

Idea: easier to send code to data than vice versa:

Worldwide LHC Computing Grid

necessarily heterogeneous

- small univ. clusters
- leadership class HPCs

Mission: Keep it all working for all use-cases

- from well-oiled s/w
- to one-off users

Distributed Computing \low **Software Distribution**

Idea: easier to send code to data than vice versa.

We need to materialize the software stack on the remote machines <u>somehow</u>.

Provided by Site Admins - e.g. CERN Linux (SLC6, CC7)

Provided by CVMFS (read only fs) efficient hierarchy of caches

Provided by Users distributed via HTTP download (.tgz)

Advantages

Software distribution is very efficient

- mainly through convention
 - we <u>agree</u> on a base OS
 - we publish all experiment sw/ on cvmfs.
 - <u>agree</u> not to delete, to responsibly manage global state
 - user app layer is small

Challenges

The current system works very well for standard workloads (bulk reconstruction, vanilla analysis code)

But relies on separate parties to "materialize the stack"

Goals

- We want reproducible software environments -- globally
 - dev prod parity easier testing
 - software archiving / computational reproducibility of results
- We want full control over our stack and loose coupling
 - global fs → global state, large dependency surface
 - hard to analysis precisely on *which* slice of cvmfs you depend on for a specific application
 - Out Stacks are changing and become more diverse
 - Machine Learning
 - Special Architectures
 - Long tail of data-science / analysis software (e.g. python eco-system)

Distributed Computing \low **Software Distribution**

Industry found alternative way for reproducible, global sofware distribution

OCI Container Images

Give application developer full control (and responsibility) of defining their runtime environment.

FRN

Only expose Linux Kernel as interface (*)

ATLAS

- one of the 4 LHC experiments
- has been driving the use of containers in HEP
 - Continuous Integration
 - Analysis Preservation
 & Reuse
 - Machine Learning

ockerhub Q Se	arch for great content (e.g., mysqi)	a hub.docker.com	C Explore Sign In Pricing G	et Started	images with A (single releas
Repositori	AS Edit profile	ATLAS Experiment at CERN 🛛 🖗 Meyrin	n 🗌 http://atlas.cem/ 🔘 joined january 23, 2015	content	l hub.docker.com (e.g., mysql)
Displaying 6 o	f 6 repositories atlas/athanalysis By atlas • Updated 20 hours ago ATLAS Athena Analysis Release Container		50K+ 3 Downloads Stars	atlasn ≗ commu	nl Edit profile unity Organization 🗈 Atlas Experiment Q CERN
۲	atlas/analysistop By atlas • Updated 20 hours ago ATLAS Standalone Top Physics Analysis Container	Release	9.5K 1 Downloads Star	es - base • Updated	16 days ago
•	atlas/analysisbase By atlas • Updated 20 hours ago		100K+ 9 Downloads Stars	aining ge	neral use common machine learning libraries
Opti with Kera	mized ML e.g. Tens is, Pythor	images orflow n 3, etc		atlasml/atlasml-bas By atlasml • Updated Image containing con Container	ie a month ago mmon machine learning libraries built from the C

 We provide to users curated base images with ATLAS software (single release images: ~2GB)

Usage in Cl

works with <u>any</u> container-aware CI system (not only on-prem, e.g. Travis, CircleCI, etc..)

very natural workflow

HWW Analysis (Higgs)

build:

```
image: atlas/analysisbase:21.2.23
stage: build
script:
    - source /home/atlas/release_setup.sh
    - mkdir ../build
    - cd ../build
    - cmake ../CAFExample
    - make -j4
    - cd ../
    - source build/*/setup.sh
```

XAMMP monoH (Exotics)
build:
stage: build
image: atlas/athanalysis:latest
script:
 # check current working environment
 - ls
 - pwd
 # setup athena release
 - source /home/atlas/release_setup.sh
 # setup working space and build the code
 - mkdir -p build
 - cd build
 - cmake ../
 - make

- cd ../
- source build/*/setup.sh

Multi-Bjet (SUSY Analysis)

.analysis_image: ℑ				
<pre>image: atlas/analysisbase:21.2.18</pre>				
tags:				
- cvmfs				
<pre>before_script:</pre>				
– pwd				
- ls				
- echo "Project Directory	<pre>\${CI_PROJECT_DIR}"</pre>			
– echo "Source Directory	\${SRC_DIR_ABS}"			
- echo " Directory Name	\${SRC_DIR}"			
- echo "Build Directory	\${BUILD_DIR_ABS}"			
- echo " Directory Name	\${BUILD DIR}"			
– source /home/atlas/release setup.sh				
- echo \$SERVICE PASS kinit	\$CERN USER			

- Usage for Analysis Preservation
 - Build images as artifacts to be reused later by different teams

Containers in ATLAS - on the

Reproducible research data analysis platform

reana

- RECAST: systematic reuse of past analyses
 - containerized, parametrized pipelines
 - better assess viability of physics theories in light of LHC data

Containers on the GRID

Containers are nice and well... ... but we need to integrate it tightly into our existing infra

E.g. native container-based jobs on WLCG grid

Currently: distribution via HTTP of layer .tgz served by registry CDN

Image Distribution

View the "image" not as a monolithic blob of layer data • rather treat its manifest as a declaration of "intent" of what rootfs the user desires

Image Distribution

Application rootfs

We know that images that users built will have significant overlap in the middle layers

- 90% of image size is in that middle part
- usually this layer is provided through a global read-only filesystem /cvmfs
- instead of exposing /cvmfs directly to users, can we distribute image files through /cvmfs?
 - best of both worlds: if /cvmfs available, use it as a CDN
 - if not available, pull full image

Image Distribution Using a Global Read-only FS

When constructing rootfs, container runtimes needs first acquire image data locally on the host and unpack

Idea: instead of downloading layer tarballs just use directories on global read-only filesystem

Image Distribution Using a Global Read-only FS

When constructing rootfs, container runtimes needs first acquire image data locally on the host and unpack

Idea: instead of downloading layer tarballs just use directories on global read-only filesystem

We're not alone

Into vivis (on oj π 00020

1.011			~~	
pradfitz	commented	on	23	Mar

+ 😐 🚥

We would also like this for https://github.com/google/crfs

📮 google / crfs				
<> Code	(!) Issues 1	1) Pull requests 0	III Insights	

CRFS: Container Registry Filesystem

🕞 21 commits	پا 2 branches	♡ 0 releases	1
Branch: master - New	pull request		Create new
bradfitz crfs: populate	inodes so we don't confuse overlayfs		

Conclusions

- Containers are a good abstraction. Overtook industry
- efficient distribution of Container images are an emerging problem
- Can use our long experience with read only global deduplicated filesystems to serve container images efficiently
 - similar ideas in industry (google/crfs)
 - opportunity to work together

