
ATLAS Containers

!1

Lukas Heinrich 2019/06/04 - CVMFS Workshop

Foundational Principle: repeated experiment, i.e. proton collisions
•each event is independent of the other
•to zero-th order HEP computing is  

embarassingly parallel - great for distributed computing

!2

HEP Computing — In a Nutshell

Idea: easier to send code to data than vice versa:

Worldwide LHC Computing Grid

necessarily heterogeneous
• small univ. clusters
• leadership class HPCs

Mission:
Keep it all working for
all use-cases

• from well-oiled s/w
• to one-off users

!3

HEP Computing — In a Nutshell

!4

Distributed Computing ↔ Software Distribution

Idea: easier to send code to data than vice versa.

We need to materialize the software stack on the remote machines
somehow.

Our traditional Stack Operating 
System

Experiment specific  
software

Application 
specific  

s/w

CERN flavored Linux experiment 
software stack 
(ATLAS, CMS) 
~5M lines C++

user analysis 
code

!5

Software Distribution today

!6

 Operating 
System

Provided by Site Admins - e.g. CERN Linux (SLC6, CC7)

Software Distribution today

!7

Provided by CVMFS (read only fs)  
efficient hierarchy of caches

 Operating 
System

Experiment specific  
software

Software Distribution today

!8

Provided by Users
distributed via HTTP download (.tgz)

 Operating 
System

Experiment specific  
software

Application 
specific  

s/w

Software Distribution today

!9

Advantages

Software distribution is very efficient
• mainly through convention

• we agree on a base OS
• we publish all experiment sw/ on cvmfs.

• agree not to delete, to responsibly manage global state
• user app layer is small

1

2

3

1

2

3

three stacks

!10

Challenges

The current system works very well for standard workloads
(bulk reconstruction, vanilla analysis code)

But relies on separate parties to "materialize the stack"

• site admins
• experiment experts
• users

If any party breaks the stack, we have a problem.

inadvertent system 
update

faulty publishing 
by expts

user error

!11

Goals

• We want reproducible software environments -- globally
• dev - prod parity - easier testing
• software archiving / computational reproducibility of results

• We want full control over our stack and loose coupling
• global fs → global state, large dependency surface

• hard to analysis precisely on *which* slice of cvmfs you 
depend on for a specific applicaiton

• Out Stacks are changing and become more diverse
• Machine Learning
• Special Architectures
• Long tail of data-science / analysis software (e.g. python

eco-system)

!12

Distributed Computing ↔ Software Distribution

Industry found alternative way for reproducible, global sofware
distribution

OCI Container Images

Give application developer full control (and responsibility) of
defining their runtime environment.

Only expose Linux Kernel as interface (*)

 Operating 
System

Experiment specific  
software

Application 
specific  

s/w

Application rootfs

(*) or less: gVisor, Nabla, ...

ATLAS

• one of the 4 LHC experiments

• has been driving the  
use of containers in HEP

• Continuous Integration
• Analysis Preservation  

& Reuse
• Machine Learning

!13

Containers in ATLAS

Me and my high school 
physics teacher today a.m.

!14

Containers in ATLAS • We provide to users curated base  
images with ATLAS software  
(single release images: ~2GB)

• Optimized ML images  
with e.g. Tensorflow 
Keras, Python 3, etc..

!15

Containers in ATLAS

• Usage in CI
• works with any container-aware CI system (not only on-prem,

e.g. Travis, CircleCI, etc..)
• very natural workflow

HWW Analysis (Higgs) XAMMP monoH (Exotics) Multi-Bjet (SUSY Analysis)

!16

Containers in ATLAS

• Usage for Analysis Preservation
• Build images as artifacts to be reused later by different teams

ASG Release  
21.2.X

Base OS 
system libs

official base image

ASG Release  
21.2.X

My 
Analysis 

Code

Base OS 
system libs

analysis-specific image  
for analysis preservation

analysis preservation: 
package release + user code

http://gitlab-registry.cern.ch/myproject/mycode

!17

Containers in ATLAS - on the

• RECAST: systematic reuse of past analyses
• containerized, parametrized pipelines
• better assess viability of physics theories  

in light of LHC data

>./code {x} {y}

x

y

f(·)

y = f(x)

!18

Containers on the GRID

Containers are nice and well...
... but we need to integrate it tightly into our existing infra

E.g. native container-based jobs on WLCG grid

user laptop  
local dev

unit & integration  
tests (CI) 
image building

registry

GRID

Kubernetes

LXBATCH

!19

Currently: distribution via HTTP of layer .tgz served by registry CDN

application rootfs

Software Distribution today

!20

Image Distribution

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 4

La
ye

r 5

La
ye

r 6

La
ye

r 7

La
ye

r 8

View the "image" not as a monolithic blob of layer data
• rather treat its manifest as a declaration of 

"intent" of what rootfs the user desires

Application rootfs

=

!21

Image Distribution

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 4

La
ye

r 5

La
ye

r 6

La
ye

r 7

La
ye

r 8

We know that images that users built will have significant overlap
in the middle layers

• 90% of image size is in that middle part
• usually this layer is provided through a global read-only

filesystem /cvmfs

• instead of exposing /cvmfs directly to users, can we
distribute image files through /cvmfs?

• best of both worlds: if /cvmfs available, use it as a CDN
• if not available, pull full image

Application rootfs

=

Experiment Software

!22

Image Distribution Using a Global Read-only FS

When constructing rootfs, container runtimes needs first acquire
image data locally on the host and unpack

Idea: instead of downloading layer tarballs just use directories
on global read-only filesystem

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 4

La
ye

r 5

La
ye

r 6

La
ye

r 7

La
ye

r 8

lyr1.tgz lyr5.tgzlyr4.tgz lyr8.tgz

deduped file storage

!23

Image Distribution Using a Global Read-only FS

When constructing rootfs, container runtimes needs first acquire
image data locally on the host and unpack

Idea: instead of downloading layer tarballs just use directories
on global read-only filesystem

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 4

La
ye

r 5

La
ye

r 6

La
ye

r 7

La
ye

r 8

lyr1.tgz lyr5.tgzlyr4.tgz lyr8.tgz

deduped file storage

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 4

La
ye

r 5

La
ye

r 6

La
ye

r 7

La
ye

r 8

Tr
an

si
en

t

overlay

!24

!25

We're not alone

!26

Conclusions

• Containers are a good abstraction. Overtook industry

• efficient distribution of Container images are an emerging
problem

• Can use our long experience with read only global de-
duplicated filesystems to serve container images efficiently

• similar ideas in industry (google/crfs)
• opportunity to work together

