CernVM Workshop 2019 (4th June 2019)

Rootless containers with Podman
and fuse-overlayfs

Giuseppe Scrivano
(@gscrivano

Introduction

Rootless Containers

« “Rootless containers refers to the ability for an unprivileged
user (i.e. non-root user) to create, run and otherwise manage
containers.” (https://rootlesscontaine.rs/)

+ Not just about running the container payload as an
unprivileged user

 Container runtime runs also as an unprivileged user

‘ Red Hat

https://rootlesscontaine.rs/

Don't confuse with...

* sudo podman run --user foo
— Executes the process in the container as non-root
— Podman and the OCI runtime still running as root

* USER instruction in Dockerfile
— same as above
— Notably you cant RUN dnf install

‘ Red Hat

Don't confuse with...

* podman run --uldmap
— Execute containers as a non-root user, using user
Namespaces

— Most similar to rootless containers, but still requires
podman and runc to run as root

‘ Red Hat

Motivation of Rootless Containers

+ To mitigate potential vulnerability of container runtimes

* To allow users of shared machines (e.g. HPC) to run

containers without the risk of breaking other users
environments

 To isolate nested containers

‘ Red Hat

Caveat: Not a panacea

- Although rootless containers could mitigate these
vulnerabilities, it is not a panacea, especially it is powerless
against kernel (and hardware) vulnerabilities
— CVE 2013-1858, CVE-2015-1328, CVE-2018-18955 -~

 Castle approachi=:: it should be used in conjunction with
other security layers such as seccomp and SELinux

‘ Red Hat

Podman

Rootless Podman

Podman is a daemon-less alternative to Docker
- § alias docker=podman

* Better integration with systemd

‘ Red Hat

Rootless Podman

Storage

Runtime data

Configuration

‘ Red Hat

Root

/var/lib/containers

/run/libpod

/etc/containers

Rootless

SHOME/.local/share/containers

$XDG _RUNTIME DIR/libpod
(/run/user/1000/libpod)

$HOME/.config/containers

Rootless Podman

$ podman run --name nginx -d -p 8080:80 -v ~/public_html:/usr/share/nginx/html:ro nginx

Podman process (euid=$UID)

Join existing user+mount
namespace, or create one

/ Setup the network namespace with slirp4netns

Podman process (euid=0)

'
 , Setup the storage and the fuse-overlayfs

conmon mount

OCI runtime

container process
& RedHat

Implementation details

12

User Namespaces

- The key component of rootless containers.
— Map UIDs/GIDs in the guest to different UIDs/GIDs on
the host.
— Unprivileged users can have (limited) root inside a user
namespace!

« Root in a user namespace has UID 0 and full capabilities,
but obvious restrictions apply.
— Inaccessible files, inserting kernel modules, rebooting, ...

‘ Red Hat

User Namespaces

Host namespace 1st level user namespace 2nd level user namespace

110000
110001
110002

110003

User Namespaces

To allow multi-user mappings, shadow-utils provides newuidmap and

newgidmap (packaged by most distributions).
— SETUID binaries writing mappings configured in /etc/sub[ug]id

/etc/subuid: Provided by the admin (real root)
1000:420000:65536

/prOC/42/uid_map: User can configure map UIDs after

0 1000 1 unsharing a user namespace

1 420000 65536

User Namespaces

Problems:

SETUID binary can be dangerous !
— newuidmap & newgidmap had two CVEs so far:
CVE-2016-6252 (CVSS v3: 7.8): integer overflow issue
CVE-2018-7169 (CVSS v3: 5.3): supplementary GID issue
Hard to maintain subuid & subgid
— Having 65536 sub-IDs should be ok for most cases, but to allow
nesting user namespaces, an enormous number of sub-IDs would
be needed
Potential sub-ID starvation

‘ Red Hat

User Namespaces

Alternative way: Single-mapping mode

- Single-mapping mode does not require
newuidmap/newgidmap
* There is only one UID/GID available in the container

Limit the privileges of newuidmap/newgidmap

- Install them using file capabilities rather than SETUID bit
— Only CAP_SETUID and CAP_SETGID are needed

‘ Red Hat

Network Namespaces

- An unprivileged user can create network namespaces along
with user namespaces

- With network namespaces, the user can
— create iptables rules
— isolate abstract (pathless) UNIX sockets
— set up overlay networking with VXLAN
— run tcpdump

‘ Red Hat

Network Namespaces

« But an unprivileged user cannot set up veth pairs across
the host and namespaces, i.e. No internet connection

UserNS + NetNS

Network Namespaces

Prior work: LXC uses SETUID binary (1xc-user-nic) for
setting up the veth pair across the the host and containers

Problem: SETUID binary can be dangerous! |

« CVE-2017-5985 (CVSS v3: 3.3): netns privilege escalation
+ CVE-2018-6556 (CVSS v3: 3.3): arbitrary file open (2)

‘ Red Hat

Network Namespaces

we use a completely unprivileged usermode network (“slirp”)
with a TAP device

The Internet
Host “Slirp” TAPFD

UserNS + NetNS TAP ,

send fd as SCM RIGHTS cmsg via an UNIX socket

‘ Red Hat

Network Namespaces

Benchmark of several “Slirp” implementations:
MTU=1500 MTU=4000 MTU=16384 MTU=65520

vde plug 763 Mbps
VPNKit 514 Mbps 526 Mbps 540 Mbps

slirpdnetns 1.07 Gbps 2.78 Gbps 4.55 Gbps | 9.21 Gbps

slirp4netns (based on QEMU Slirp) is the fastest because it avoids
copying packets across the namespaces

‘ Red Hat

Multi-node networking

« Flannel VXLAN is known to work
— Encapsulates Ethernet packets in UDP packets
— Provides L2 connectivity across rootless containers on
different nodes

» Other protocols should work as well, except ones that
require access to raw Ethernet

‘ Red Hat

/sys/fs/cgroup is a roadblock to many features we want in rootless
containers (accounting, pause and resume, even getting a list of PIDs!).

By default completely owned by root (and managed by systemd).
Some workarounds:

LXC’s pam_cgfs requires installation of a PAM module (and only works
for logged-in users). It needs to be used carefully as it gives cgroupv1

write access to unprivileged users.
cgroup namespaces (with nsdelegate) only work in cgroupv2.

‘ Red Hat

cgroups v2

- Safe to use for unprivileged user
- An entire subtree is delegated to the user
- The file path is not the only difference I

/sys/fs/cgroup/memory/foo/bar/memory.limit_in_bytes /sysl/fs/cgroup/foo/bar/memory.max

Isys/fsicgroup/cpu/foo/bar/cpu.shares Isys/fs/cgroup/foo/bar/cpu.max

OCI runtime specs are designed around cgroup v1
supporting cgroup v2 will require changes in the OCI specs

« crun attempts to convert from cgroup v1 to cgroup v2
(https://qithub.com/giuseppe/crun/). Alternative OCI runtime, drop-in
replacement for runc.

‘ Red Hat

https://github.com/giuseppe/crun/

Storage

27

Root Filesystems

The container root filesystem has to live somewhere. Many filesystem
features used by “rootful” container runtimes aren'’t available.

-« Ubuntu allows overlayfs in a user namespace, but this isn't supported
upstream (due to security concerns).

- BTRFS allows unprivileged subvolume management, but requires
privileges to set it up beforehand.

Devicemapper is completely locked away from us.

‘ Red Hat

Root Filesystems

A “simple” work-around is to just extract images to a directory!
It works ... but people want storage deduplication.
Alternatives:

Reflinks to a "known good" extracted image (inode exhaustion).
— (Can use on XFS, btrfs, ... but not ext4.)
Unprivileged userspace overlayfs using FUSE (Kernel 4.18+).

‘ Red Hat

fuse-overlayfs

Overlayfs implementation using FUSE €
Layers deduplication as for root containers €3
Fast setup for a new container @ |
Built-in support for shifting UIDs/GIDs €

e Adds complexity @

‘ Red Hat

fuse-overlayfs UIDs/GIDs shifting

e When creating a user namespace, we must ensure proper ownership of
the files in the RO layers.

e the file system “lies” about the owner, so that it has the correct UID/GID
in the user namespace and the same layer on disk can be used by
different user namespaces.

e Less expensive alternative to co -r and chown'ing the entire image
and layers.

‘ Red Hat

fuse-overlayfs UIDs/GIDs shifting

Namespace configuration

1000 ->0
110000:4096 -> 1..4096

1000 ->0
118000:4096 -> 1..4096

From the host

/usr/bin/ls 1000:1000
lusr/bin/write 1000:110004

/usr/bin/ls 1000:1000
lusr/bin/write 1000:118004

From the container

lusr/bin/ls 0:0

lusr/bin/write 0:5

lusr/binl/ls 0:0

/usr/bin/write 0:5

Questions?

gscrivan@redhat.com

(@gscrivano

33

