
Giuseppe Scrivano
 @gscrivano

CernVM Workshop 2019 (4th June 2019)

Rootless containers with Podman
and fuse-overlayfs

Introduction

2

Rootless Containers
• “Rootless containers refers to the ability for an unprivileged

user (i.e. non-root user) to create, run and otherwise manage
containers.” (https://rootlesscontaine.rs/)

• Not just about running the container payload as an
unprivileged user

• Container runtime runs also as an unprivileged user

3

https://rootlesscontaine.rs/

Don’t confuse with...
• sudo podman run --user foo

– Executes the process in the container as non-root
– Podman and the OCI runtime still running as root

• USER instruction in Dockerfile
– same as above
– Notably you can’t RUN dnf install ...

4

Don’t confuse with...
• podman run --uidmap

– Execute containers as a non-root user, using user
namespaces

– Most similar to rootless containers, but still requires
podman and runc to run as root

5

Motivation of Rootless Containers
• To mitigate potential vulnerability of container runtimes

• To allow users of shared machines (e.g. HPC) to run
containers without the risk of breaking other users
environments

• To isolate nested containers

6

Caveat: Not a panacea
• Although rootless containers could mitigate these

vulnerabilities, it is not a panacea , especially it is powerless
against kernel (and hardware) vulnerabilities
– CVE 2013-1858, CVE-2015-1328, CVE-2018-18955

• Castle approach : it should be used in conjunction with
other security layers such as seccomp and SELinux

7

Podman

8

Rootless Podman
Podman is a daemon-less alternative to Docker

• $ alias docker=podman

• Better integration with systemd

9

Rootless Podman

10

Root Rootless

Storage /var/lib/containers $HOME/.local/share/containers

Runtime data /run/libpod $XDG_RUNTIME_DIR/libpod
(/run/user/1000/libpod)

Configuration /etc/containers $HOME/.config/containers

Rootless Podman

11

$ podman run --name nginx -d -p 8080:80 -v ~/public_html:/usr/share/nginx/html:ro nginx

Podman process (euid=$UID)

Podman process (euid=0)

Join existing user+mount
namespace, or create one

Setup the storage and the fuse-overlayfs
mount

Setup the network namespace with slirp4netns

conmon

OCI runtime

container process

Implementation details

12

User Namespaces
• The key component of rootless containers.

– Map UIDs/GIDs in the guest to different UIDs/GIDs on
the host.

– Unprivileged users can have (limited) root inside a user
namespace!

• Root in a user namespace has UID 0 and full capabilities,
but obvious restrictions apply.
– Inaccessible files, inserting kernel modules, rebooting, ...

13

User Namespaces

14

1000

110000

...

...

110001

110002

110003

...

1

3

2

0

4

...

Host namespace 1st level user namespace

0

1

2nd level user namespace

User Namespaces
• To allow multi-user mappings, shadow-utils provides newuidmap and

newgidmap (packaged by most distributions).
– SETUID binaries writing mappings configured in /etc/sub[ug]id

/etc/subuid:
 1000:420000:65536

/proc/42/uid_map:
 0 1000 1

1 420000 65536

Provided by the admin (real root)

User can configure map UIDs after
unsharing a user namespace

15

User Namespaces
Problems:

• SETUID binary can be dangerous
– newuidmap & newgidmap had two CVEs so far:

• CVE-2016-6252 (CVSS v3: 7.8): integer overflow issue
• CVE-2018-7169 (CVSS v3: 5.3): supplementary GID issue

• Hard to maintain subuid & subgid
– Having 65536 sub-IDs should be ok for most cases, but to allow

nesting user namespaces, an enormous number of sub-IDs would
be needed

• Potential sub-ID starvation

16

User Namespaces
Alternative way: Single-mapping mode
• Single-mapping mode does not require
newuidmap/newgidmap

• There is only one UID/GID available in the container

Limit the privileges of newuidmap/newgidmap
• Install them using file capabilities rather than SETUID bit

– Only CAP_SETUID and CAP_SETGID are needed

17

Network Namespaces
• An unprivileged user can create network namespaces along

with user namespaces

• With network namespaces, the user can
– create iptables rules
– isolate abstract (pathless) UNIX sockets
– set up overlay networking with VXLAN
– run tcpdump
– ...

18

Network Namespaces
• But an unprivileged user cannot set up veth pairs across

the host and namespaces, i.e. No internet connection

19

The Internet

Host

UserNS + NetNS

Network Namespaces
Prior work: LXC uses SETUID binary (lxc-user-nic) for
setting up the veth pair across the the host and containers

Problem: SETUID binary can be dangerous!
• CVE-2017-5985 (CVSS v3: 3.3): netns privilege escalation
• CVE-2018-6556 (CVSS v3: 3.3): arbitrary file open(2)

20

Network Namespaces
we use a completely unprivileged usermode network (“slirp”)
with a TAP device

TAP

“Slirp” TAPFD

send fd as SCM_RIGHTS cmsg via an UNIX socket

The Internet

Host

UserNS + NetNS

21

Network Namespaces
Benchmark of several “Slirp” implementations:

• slirp4netns (based on QEMU Slirp) is the fastest because it avoids
copying packets across the namespaces

MTU=1500 MTU=4000 MTU=16384 MTU=65520

vde_plug 763 Mbps Unsupported Unsupported Unsupported

VPNKit 514 Mbps 526 Mbps 540 Mbps Unsupported

slirp4netns 1.07 Gbps 2.78 Gbps 4.55 Gbps 9.21 Gbps
cf. rootful veth 52.1 Gbps 45.4 Gbps 43.6 Gbps 51.5 Gbps

22

Multi-node networking
• Flannel VXLAN is known to work

– Encapsulates Ethernet packets in UDP packets
– Provides L2 connectivity across rootless containers on

different nodes

• Other protocols should work as well, except ones that
require access to raw Ethernet

23

cgroups
/sys/fs/cgroup is a roadblock to many features we want in rootless
containers (accounting, pause and resume, even getting a list of PIDs!).

• By default completely owned by root (and managed by systemd).
Some workarounds:

• LXC’s pam_cgfs requires installation of a PAM module (and only works
for logged-in users). It needs to be used carefully as it gives cgroupv1
write access to unprivileged users.

• cgroup namespaces (with nsdelegate) only work in cgroupv2.

24

cgroups v2
• Safe to use for unprivileged user
• An entire subtree is delegated to the user
• The file path is not the only difference

25

/sys/fs/cgroup/memory/foo/bar/memory.limit_in_bytes

/sys/fs/cgroup/cpu/foo/bar/cpu.shares

...

/sys/fs/cgroup/foo/bar/memory.max

/sys/fs/cgroup/foo/bar/cpu.max

...

cgroups v2
• OCI runtime specs are designed around cgroup v1

• supporting cgroup v2 will require changes in the OCI specs

• crun attempts to convert from cgroup v1 to cgroup v2
(https://github.com/giuseppe/crun/). Alternative OCI runtime, drop-in
replacement for runc.

26

...

https://github.com/giuseppe/crun/

Storage

27

Root Filesystems
The container root filesystem has to live somewhere. Many filesystem
features used by “rootful” container runtimes aren’t available.

• Ubuntu allows overlayfs in a user namespace, but this isn't supported
upstream (due to security concerns).

• BTRFS allows unprivileged subvolume management, but requires
privileges to set it up beforehand.

• Devicemapper is completely locked away from us.

28

Root Filesystems

A “simple” work-around is to just extract images to a directory!
• It works … but people want storage deduplication.

Alternatives:
• Reflinks to a "known good" extracted image (inode exhaustion).

– (Can use on XFS, btrfs, ... but not ext4.)
• Unprivileged userspace overlayfs using FUSE (Kernel 4.18+).

29

fuse-overlayfs
● Overlayfs implementation using FUSE
● Layers deduplication as for root containers
● Fast setup for a new container
● Built-in support for shifting UIDs/GIDs

● Adds complexity

30

fuse-overlayfs UIDs/GIDs shifting
● When creating a user namespace, we must ensure proper ownership of

the files in the RO layers.

● the file system “lies” about the owner, so that it has the correct UID/GID
in the user namespace and the same layer on disk can be used by
different user namespaces.

● Less expensive alternative to cp -r and chown’ing the entire image
and layers.

31

fuse-overlayfs UIDs/GIDs shifting

32

1000 -> 0
110000:4096 -> 1..4096

Namespace configuration

/usr/bin/ls 1000:1000

From the host From the container

/usr/bin/write 1000:110004

/usr/bin/ls 0:0

/usr/bin/write 0:5

/usr/bin/ls 1000:1000

/usr/bin/write 1000:118004

/usr/bin/ls 0:0

/usr/bin/write 0:5

1000 -> 0
118000:4096 -> 1..4096

Questions?

33

gscrivan@redhat.com

@gscrivano

