
1

Executions Plans
after the first steps

Jonathan Lewis

jonathanlewis.wordpress.com

www.jlcomp.demon.co.uk

Topic

page 2

Jonathan Lewis

© 2002 - 2018

Independent Consultant

36 years in IT

31 using Oracle (5.1a on MSDOS 3.3)

Strategy, Design, Review,

Briefings, Educational,

Trouble-shooting

Founder Member of Oak Table Network

Best Presentation HROUG 2016

UKOUG Lifetime Award (IPA) 2013

ODTUG 2012 Best Presenter (d/b)

UKOUG Inspiring Presenter 2012

UKOUG Inspiring Presenter 2011

Select Editor’s choice 2007

Oracle author of the year 2006

Oracle ACE Director

O1 visa for USA

My History

Many slides have a foot-note. This is just two lines summarizing the highlights of the

slide so that you have a reference when reading the handouts at a later date.

2

Topic

page 3

Jonathan Lewis

© 2002 - 2018

Acquisition (a)

explain plan for …

select * from table(dbms_xplan.display)

SQL*Plus special

set autotrace traceonly explain

execute query

Problem:

This can produce plans that won't appear at run time.

• any bind variables are assumed to be character type

• there are no bound values to peek

Problem:

As above, since this is just running "explain plan" under the covers.

Special case

For "traceonly explain" - Oracle will not run select statements, but it does

run inserts, updates or deletes.

Note - the autotrace option in SQL*Developer will ask for values for any bind, run

the query and pull the plan (and all the session statistics) from memory.

Topic

page 4

Jonathan Lewis

© 2002 - 2018

Acquisition (b)

SQL*Plus special case

set linesize …

set pagesize …

set trimspool on

set serveroutput off

execute a query

select * from table(dbms_xplan.display_cursor);

In SQL*Plus a call to display_cursor with no parameters will display the execution

plan of the most recent statement - which might be dbms_output.get_lines().

General call

select *

from table(dbms_xplan.display_cursor(

{sql_id}, {child_number}, {format options}

)

;

3

Topic

page 5

Jonathan Lewis

© 2002 - 2018

Acquisition (c)

alter session set statistics_level = all;

alter session set "_rowsource_execution_statistics" = true

add /*+ gather_plan_statistics */ hint to the query

-- execute the query

select *

from table(

dbms_xplan.display_cursor(null,null,'allstats [last]')

);

Gathering rowsource execution statistics can add a significant CPU overhead to the

query, depending on operating system and the operations used by the query.

Reports

• the number of times each line of the plan was run.

• the number of rows supplied by each line to it parent

• the number of buffer gets (accumulating up the plan) due to each line

• the number of disk reads (accumulating up the plan) due to each line

Note: the hint strategy samples for some of the statistics.

Topic

page 6

Jonathan Lewis

© 2002 - 2018

Acquisition (d)

SQL Monitor

(requires performance and diagnostic licences)

• add /*+ monitor */ hint to the query

• any query that runs more than 5 seconds

• any query that executes as a parallel query

There is a graphic user interface with a very nice presentation available through both

SQL*Developer and the Enterprise Manager, but a text output is very helpful.

set long 1000000 longchunksize 32000

select

dbms_sqltune.report_sql_monitor(

-- sql_id => '&m_sql_id',

-- start_time_filter => sysdate - 30/(24 * 60),

type =>'TEXT' /* 'ACTIVE' */

) text_line

from dual

;

4

Topic

page 7

Jonathan Lewis

© 2002 - 2018

Projection (a)

merge

into ord

using x

on (ord.global_ext_id = x.ext_id)

when matched then

update set ord.ord_id = x.ord_id

;

I happen to have perfect indexes on tables x and ord that include all the columns in the

query - why am I getting full tablescans ?

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | MERGE STATEMENT | | 1100 | 28600 | 488 (1)| 00:00:01 |

| 1 | MERGE | ORD | | | | |

| 2 | VIEW | | | | | |

|* 3 | HASH JOIN | | 1100 | 256K| 488 (1)| 00:00:01 |

| 4 | TABLE ACCESS FULL| ORD | 1000 | 114K| 7 (0)| 00:00:01 |

| 5 | TABLE ACCESS FULL| X | 100K| 11M| 480 (1)| 00:00:01 |

Predicate Information (identified by operation id):

3 - access("ORD"."GLOBAL_EXT_ID"="X"."EXT_ID")

Topic

page 8

Jonathan Lewis

© 2002 - 2018

Projection (b)

select * from table(dbms_xplan.display(null,null,'projection'));

If we request the projection information (which columns are supplied by each

rowsource) we see lots of redundant columns. Let's eliminate them.

Column Projection Information (identified by operation id):

1 - SYSDEF[4], SYSDEF[32720], SYSDEF[1], SYSDEF[112], SYSDEF[32720]

2 - "X"."ORD_ID"[NUMBER,22]

3 - (#keys=1) "ORD"."GLOBAL_EXT_ID"[NUMBER,22],

"X"."EXT_ID"[NUMBER,22], "ORD".ROWID[ROWID,10],

"ORD"."ORD_ID"[NUMBER,22], "ORD"."PADDING"[VARCHAR2,100],

"ORD"."V1"[VARCHAR2,10], "X"."ORD_ID"[NUMBER,22],

"X"."PADDING"[VARCHAR2,100], "X"."V1"[VARCHAR2,10]

4 - "ORD".ROWID[ROWID,10], "ORD"."ORD_ID"[NUMBER,22],

"ORD"."GLOBAL_EXT_ID"[NUMBER,22], "ORD"."V1"[VARCHAR2,10],

"ORD"."PADDING"[VARCHAR2,100]

5 - "X"."ORD_ID"[NUMBER,22], "X"."EXT_ID"[NUMBER,22],

"X"."V1"[VARCHAR2,10], "X"."PADDING"[VARCHAR2,100]

5

Topic

page 9

Jonathan Lewis

© 2002 - 2018

Projection (c)

merge

into (select ord.ord_id, ord.global_ext_id from ord) ord

using (select ext_id, ord_id from x) x

on (ord.global_ext_id = x.ext_id)

when matched then

update set ord.ord_id = x.ord_id

;

List only the relevant columns as inline subqueries and not only is the volume of data

reduced, we've now managed to use a more efficient path to get some of it.

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | MERGE STATEMENT | | 1100 | 28600 | 108 (2)| 00:00:01 |

| 1 | MERGE | ORD | | | | |

| 2 | VIEW | | | | | |

|* 3 | HASH JOIN | | 1100 | 44000 | 108 (2)| 00:00:01 |

| 4 | TABLE ACCESS FULL | ORD | 1000 | 30000 | 7 (0)| 00:00:01 |

| 5 | INDEX FAST FULL SCAN| X_IDX2 | 100K| 976K| 100 (1)| 00:00:01 |

Predicate Information (identified by operation id):

3 - access("ORD"."GLOBAL_EXT_ID"="X"."EXT_ID")

Topic

page 10

Jonathan Lewis

© 2002 - 2018

Projection (d)

select * from table(dbms_xplan.display(null,null,'projection'));

When we check the projection information we can see that we're no longer carrying the

redundant columns. This can make a huge difference to the hash join.

Column Projection Information (identified by operation id):

1 - SYSDEF[4], SYSDEF[32720], SYSDEF[1], SYSDEF[112], SYSDEF[32720]

2 - "X"."ORD_ID"[NUMBER,22]

3 - (#keys=1) "ORD"."GLOBAL_EXT_ID"[NUMBER,22], "EXT_ID"[NUMBER,22],

"ORD".ROWID[ROWID,10], "ORD"."ORD_ID"[NUMBER,22], "ORD_ID"[NUMBER,22]

4 - "ORD".ROWID[ROWID,10], "ORD"."ORD_ID"[NUMBER,22],

"ORD"."GLOBAL_EXT_ID"[NUMBER,22]

5 - "ORD_ID"[NUMBER,22], "EXT_ID"[NUMBER,22]

6

Topic

page 11

Jonathan Lewis

© 2002 - 2018

First child First (a)

There are two basic patterns in a plan:

– Single child parent

– Multi-child parent

There are two basic rules for simple plans:

– A child operation generates a rowsource for its parent[1]

– A parent operation calls its children in turn[2][3]

[1] And only for its parent
[2] In the order they appear in the execution plan
[3] But calls can be repeated

Topic

page 12

Jonathan Lewis

© 2002 - 2018

First child First (b)

Single-child parent

| Id | Operation | Name |

| 1 | TABLE ACCESS BY INDEX ROWID BATCHED| T1 |

|* 2 | INDEX RANGE SCAN | T1_PK |

It is not possible to visit the table by rowid until the parent

calls the child to supply a rowid (or list of rowids).

Recent versions of Oracle can pass a set of rowids to the

parent from a range scan - in older versions the parent has

to call the child repeatedly for "the next" rowid until it gets

"no more rowids".

7

Topic

page 13

Jonathan Lewis

© 2002 - 2018

First child First (c)

Multi-child parent (hash join)

| Id | Operation |

| 1 | HASH JOIN |

| 2 | First rowsource generator |

| 3 | Second rowsource generator |

The hash join operation calls its first child (once) to generate a

rowsource and creates a hash table from it, hoping that it can be

built completely in memory

Then it calls the second child to derive and start supplying a second

non-correlated row source and uses it to probe the hash table.

This is the simplest "first child first" - the first child is always the one

that supplies the date that is used for the hash table.

Topic

page 14

Jonathan Lewis

© 2002 - 2018

First child First (d)

Multi-child parent (nested loop)

| Id | Operation |

| 1 | NESTED LOOP |

| 2 | First rowsource |

| 3 | Second rowsource |

The nested loop operation calls its first child operation to derive and

then start supplying rows one at a time.

Then, for each row from the first rowsource, it calls the second child

operation to generate a correlated rowsource.

Since we may have to call the second operation many times we

hope that it has an efficient method of generating data - which is

where we typically see the first signs of recursion.

8

Topic

page 15

Jonathan Lewis

© 2002 - 2018

First child First (d2)

Multi-child parent (nested loop)
--

| Id | Operation |

--

| 1 | NESTED LOOP |

| 2 | First rowsource |

| 3 | TABLE ACCESS BY INDEX ROWID BATCHED| T1 |

|* 4 | INDEX RANGE SCAN | T1_PK |

--

We typically expect to see the second rowsource of a nested loop

is a table access by rowid that has to call its child operation (and

index access) before it can visit the table.

Topic

page 16

Jonathan Lewis

© 2002 - 2018

First child First (e)

Multi-child parent (merge join)

| Id | Operation |

| 1 | MERGE JOIN |

| 2 | First ordered rowsource |

| 3 | Second ordered rowsource |

The merge join operation calls its first child to supply an ordered

rowsource - which it may acquire in its entirety and attempt to keep

in memory.

Then it calls the second child once for each row in the first

rowsource to search for matching rows. The first time the second

child operation is called it will derive a suitable ordered non-

correlated rowsource and store it in memory (possibly spilling to

disc) to make it possible for the searches to operate efficiently.

The merge join is an interesting hybrid. It starts with a non-correlated second child

like the hash join, then does the equivalent of a nested loop into the resulting data set

9

Topic

page 17

Jonathan Lewis

© 2002 - 2018

First child First (f)

Multi-child parent (filter)

| Id | Operation |

| 1 | FILTER |

| 2 | First rowsource |

| 3 | Second rowsource |

| ... | ... |

| N+1 | Nth rowsource |

There are three main filter operation. The more common multi-child

filter calls its first child to supply a rowsource, and then for each row

in turn it calls each following child operation to supply a correlated

rowsource, until one of the child operations satisfies a condition that

allows the parent to move on to the next row from the first

rowsource.

We'll see the other interpretations of the filter operation later.

Topic

page 18

Jonathan Lewis

© 2002 - 2018

1st child 1st - recursive descent (a)

A could have been generated by a parent operation combining the

rowsources from its child operation so, for example, the first child of a

hash join might be another hash join

| Id | Operation |

| 1 | HASH JOIN |

| 2 | First rowsource generator |

| 3 | Second rowsource generator |

| Id | Operation |

| 1 | HASH JOIN | We start here

| 2 | Hash Join | Which means we start here

| 2a | Rowsource operation A | Which means we start here

| 2b | Rowsource operation B |

| 3 | Second rowsource generator |

10

Topic

page 19

Jonathan Lewis

© 2002 - 2018

1st child 1st - recursive descent (b)

But rowsource operation A could have been the result of a hash join.

| Id | Operation |

| 1 | HASH JOIN | We start here

| 2 | Hash Join | Which means we start here

| 2a | Hash Join | Which means we start here

| 2ax | Rowsource operation AX | Which means we start here

| 2ay | Rowsource operation AY |

| 2b | Rowsource operation B |

| 3 | Second rowsource generator |

| Id | Operation |

| 1 | HASH JOIN |

| 2 | Hash Join |

| 2a | Rowsource operation A |

| 2b | Rowsource operation B |

| 3 | Second rowsource generator |

Topic

page 20

Jonathan Lewis

© 2002 - 2018

1st child 1st - recursive descent (c)

Let's assume all our base rowsource operations are tablescans

| Id | Operation |

| 1 | HASH JOIN | We start here

| 2 | Hash Join | Which means we start here

| 2a | Hash Join | Which means we start here

| 2ax | table access full t4 | Which means we start here

| 2ay | table access full t3 | then scan and probe

| 2b | table access full t2 | then scan and probe

| 3 | table access full t1 | then scan and probe

AX -> tablescan of t4

AY -> tablescan of t3

B -> tablescan of t2

2nd -> tablescan of t1

11

Topic

page 21

Jonathan Lewis

© 2002 - 2018

SELECT STATEMENT

HASH JOIN

HASH JOIN

TABLE ACCESS FULL T1

TABLE ACCESS FULL T2

TABLE ACCESS FULL T3

Text to Tree (a)

How can we turn a textual execution plan into a tree-diagram. The tree on the right is

the picture for the plan on the left.

Table access full T1 Table access full T2

Table Access Full T3

Hash Join

Hash Join

Select

Topic

page 22

Jonathan Lewis

© 2002 - 2018

SELECT STATEMENT

HASH JOIN

HASH JOIN

TABLE ACCESS FULL T1

TABLE ACCESS FULL T2

TABLE ACCESS FULL T3

Text to Tree (a)

12

Topic

page 23

Jonathan Lewis

© 2002 - 2018

Text to Tree (a)

Reflect Horizontally

Rotate slightly

Topic

page 24

Jonathan Lewis

© 2002 - 2018

Text to Tree (a)

Tidy and label

Table access full T1 Table access full T2

Table Access Full T3

Hash Join

Hash Join

Select

13

Topic

page 25

Jonathan Lewis

© 2002 - 2018

1st child 1st - recursive descent (d)

But what if it's the second rowsource that is the more complex one ?

| Id | Operation |

| 1 | HASH JOIN |

| 2 | First rowsource generator |

| 3 | Second rowsource generator |

| Id | Operation |

| 1 | HASH JOIN | We start here

| 2 | First rowsource generator | which means we build this

| 3 | Hash join | but can't probe until

| 3p | Rowsource operation P | we build this

| 3q | Rowsource operation Q | and probe with 3q

Topic

page 26

Jonathan Lewis

© 2002 - 2018

1st child 1st - recursive descent (e)

But maybe the rowsource at 3q is also a little complicated

| Id | Operation |

| 1 | HASH JOIN |

| 2 | First rowsource generator |

| 3 | Hash join |

| 3p | Rowsource operation P |

| 3q | Rowsource operation Q |

| Id | Operation |

| 1 | HASH JOIN | We start here

| 2 | First rowsource generator | Which means we build this

| 3 | Hash join | but can't probe until

| 3p | Rowsource operation P | we build this

| 3q | Hash join | but can't probe until

| 3qm | Rowsource operation QM | we build this

| 3qn | Rowsource operation QN | and probe with 3qn

14

Topic

page 27

Jonathan Lewis

© 2002 - 2018

1st child 1st - recursive descent (f)

Assume, again, that all our base rowsource operations are tablescans

QN -> tablescan of t4

QM -> tablescan of t3

P -> tablescan of t2

1st -> tablescan of t1

| Id | Operation |

| 1 | HASH JOIN | We start here

| 2 | table access full t1 | Which means we build this

| 3 | Hash join | but can't probe until

| 3p | table access full t2 | we build this

| 3q | Hash join | but can't probe until

| 3qm | table access full t3 | we build this

| 3qn | table access full t4 | and probe with this

Topic

page 28

Jonathan Lewis

© 2002 - 2018

1st child 1st - recursive descent (g)

| Id | Operation |

| 1 | HASH JOIN |

| 2 | Hash Join |

| 3 | Hash Join |

| 4 | table access full t4 |

| 5 | table access full t3 |

| 6 | table access full t2 |

| 7 | table access full t1 |

| Id | Operation |

| 1 | HASH JOIN |

| 2 | table access full t1 |

| 3 | Hash join |

| 4 | table access full t2 |

| 5 | Hash join |

| 6 | table access full t3 |

| 7 | table access full t4 |

/*+ leading(t4 t3 t2 t1) */

Both plans join tables t4 and t3. then join t2, then join t1

The join order is identical, the order of access is reversed

/*+

leading(t4,t3,t2,t1)

swap_join_inputs(t3)

swap_join_inputs(t2)

swap_join_inputs(t1)

*/

The difference between join order, order of appearance in the plan, and order of

initial access gets more complicated in parallel execution.

15

Topic

page 29

Jonathan Lewis

© 2002 - 2018

Optional plans

| Id | Operation |

| 1 | HASH JOIN |

| 2 | Table access full t1 | -- build a hash table

| 3 | Table access full t2 | -- probe the hash table

What to you think happens if there's no relevant data in t1 ?

select * from t1 where 1 = 2;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

| 0 | SELECT STATEMENT | | | | 1 (100)|

|* 1 | FILTER | | | | |

| 2 | TABLE ACCESS FULL| T1 | 1000 | 8803K| 255 (2)|

Predicate Information (identified by operation id):

1 - filter(NULL IS NOT NULL)

One variation of the FILTER operation is the one that says: "in what circumstances

should I execute my child operation". The plan is still following the standard rule.

Topic

page 30

Jonathan Lewis

© 2002 - 2018

Filter operation (a)

| Id | Operation | Name | Rows | Bytes | Cost |

| 0 | SELECT STATEMENT | | 10 | 40 | 33 |

|* 1 | FILTER | | | | |

| 2 | HASH GROUP BY | | 10 | 40 | 33 |

| 3 | TABLE ACCESS FULL| T1 | 3000 | 12000 | 15 |

Predicate Information (identified by operation id):

1 - filter(COUNT(*)>10)

But a plan of exactly the same (sort of) shape can have a different meaning. In this

case we always execute the child first - then do some "late" elimination.

select n1, count(*)

from t1

group by

n1

having

count(*) > 10

/

16

Topic

page 31

Jonathan Lewis

© 2002 - 2018

Filter operation (b)

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

| 0 | SELECT STATEMENT | | 3000 | 547K| 15 (0)|

|* 1 | FILTER | | | | |

| 2 | TABLE ACCESS FULL| T1 | 3000 | 547K| 13 (0)|

|* 3 | INDEX RANGE SCAN | T2_I1 | 1 | 4 | 2 (0)|

This looks like a "standard" filter operation - but it's an example that breaks "1st child

1st". The "constant subquery" is run first to test whether or not to run the scan of t1.

select *

from t1

where exists (

select null

from t2

where t2.n1 > 1000

)

;

Predicate Information (identified by operation id):

1 - filter(EXISTS (SELECT 0 FROM "T2" "T2" WHERE "T2"."N1">1000))

3 - access("T2"."N1">1000)

Topic

page 32

Jonathan Lewis

© 2002 - 2018

Filter operation (c)

We could use extended tracing (perhaps flushing the buffer cache first) to show that

the tablescan doesn't happen - but enabling execution stats is quicker and easier.

set serveroutput off

alter session set statisics_level = all;

-- run query

select * from table(dbms_xplan.display_cursor(null,null,'allstats last'))

| Id |Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers |

| 0 |SELECT STATEMENT | | 1 | | 0 |00:00:00.01 | 2 |

|* 1 | FILTER | | 1 | | 0 |00:00:00.01 | 2 |

| 2 | TABLE ACCESS FULL| T1 | 0 | 3000 | 0 |00:00:00.01 | 0 |

|* 3 | INDEX RANGE SCAN | T2_I1 | 1 | 1 | 0 |00:00:00.01 | 2 |

Predicate Information (identified by operation id):

1 - filter(IS NOT NULL)

3 - access("T2"."N1">1000)

17

Topic

page 33

Jonathan Lewis

© 2002 - 2018

Filter operation (d)

If I block subquery pushing the subquery nominally runs "for each row" - but in fact,

thanks to "scalar subquery caching" it runs only once. Classic FILTER operation.

Variations on a simple correlated subquery.

select *

from t1

where n1 = (select /*+ no_push_subq */ max(n1) from t1)

;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

| 0 | SELECT STATEMENT | | 3000 | 547K| 15 (0)|

|* 1 | FILTER | | | | |

| 2 | TABLE ACCESS FULL | T1 | 3000 | 547K| 13 (0)|

| 3 | SORT AGGREGATE | | 1 | 4 | |

| 4 | INDEX FULL SCAN (MIN/MAX)| T1_I1 | 1 | 4 | 2 (0)|

Predicate Information (identified by operation id):

1 - filter("N1"= (SELECT /*+ NO_PUSH_SUBQ */ MAX("N1") FROM "T1" "T1"))

Topic

page 34

Jonathan Lewis

© 2002 - 2018

Filter operation (d)

In any vaguely recent version of Oracle this subquery will be pushed by default. It is

still a simple filter test (nominally) for each row.

select *

from t1

where n1 = (select /*+ push_subquery */ max(n1) from t1)

;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

| 0 | SELECT STATEMENT | | 15 | 2805 | 26 (0)|

|* 1 | TABLE ACCESS FULL | T1 | 15 | 2805 | 13 (0)|

| 2 | SORT AGGREGATE | | 1 | 4 | |

| 3 | TABLE ACCESS FULL| T1 | 3000 | 12000 | 13 (0)|

Predicate Information (identified by operation id):

1 - filter("N1"= (SELECT MAX("N1") FROM "T1" "T1"))

18

Topic

page 35

Jonathan Lewis

© 2002 - 2018

Filter operation (e)

Add an index on t1(n1) and the shape of the plan doesn't change much, but it's no

longer a filter - the subquery is a driving subquery.

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

| 0 | SELECT STATEMENT | | 15 | 2805 | 2 (0)|

| 1 | TABLE ACCESS BY INDEX ROWID BATCHED| T1 | 15 | 2805 | 2 (0)|

|* 2 | INDEX RANGE SCAN | T1_I1 | 15 | | 1 (0)|

| 3 | SORT AGGREGATE | | 1 | 4 | |

| 4 | INDEX FULL SCAN (MIN/MAX) | T1_I1 | 1 | 4 | 2 (0)|

Predicate Information (identified by operation id):

2 - access("N1"= (SELECT MAX("N1") FROM "T1" "T1"))

select *

from t1

where n1 = (select max(n1) from t1)

;

Topic

page 36

Jonathan Lewis

© 2002 - 2018

Query Blocks (a)

First child first with recursive descent is a good guideline for a single query block.

Many queries (like the filter with subquery) start with multiple query blocks

Select

/*+

no_query_transformation

qb_name(main)

*/

*

from t1

where

(id1) in (

select /*+ qb_name(subq_in) */ x1 from t21

)

and (id1, id2, n1) not in (

select /*+ qb_name(subq_not)*/ x1, x2, x3 from t23

)

;

19

Topic

page 37

Jonathan Lewis

© 2002 - 2018

Query Blocks (b)

select * from table(dbms_xplan.display(null,null,'alias -predicate');

| Id | Operation | Name | Rows | Bytes | Cost |

| 0 | SELECT STATEMENT | | 1 | 123 | 367K|

| * 1 | FILTER | | | | |

| 2 | TABLE ACCESS FULL| T1 | 100K| 11M| 278 |

| * 3 | TABLE ACCESS FULL| T21 | 1 | 13 | 2 |

| * 4 | TABLE ACCESS FULL| T23 | 1 | 39 | 2 |

Query Block Name / Object Alias (identified by operation id):

1 - MAIN

2 - MAIN / T1@MAIN

3 - SUBQ_IN / T21@SUBQ_IN

4 - SUBQ_NOT / T23@SUBQ_NOT

We can almost see the literal translation of our query into a plan. The query block

names are all visible, and each table (RHS) is in the query block (LHS) it started in

Topic

page 38

Jonathan Lewis

© 2002 - 2018

Query Blocks (b)

Remove the /*+ no_query_transformation */ hint:

| Id | Operation | Name | Rows | Bytes | Cost |

| 0 | SELECT STATEMENT | | 1 | 136 | 22 |

| 1 | NESTED LOOPS | | 1 | 136 | 20 |

| 2 | NESTED LOOPS | | 1 | 136 | 20 |

| 3 | SORT UNIQUE | | 1 | 13 | 2 |

| 4 | TABLE ACCESS FULL | T21 | 1 | 13 | 2 |

|* 5 | INDEX RANGE SCAN | T1_I2 | 1 | | 1 |

|* 6 | TABLE ACCESS FULL | T23 | 1 | 39 | 2 |

| 7 | TABLE ACCESS BY INDEX ROWID| T1 | 1 | 123 | 2 |

Query Block Name / Object Alias (identified by operation id):

1 - SEL$94CC97E7

4 - SEL$94CC97E7 / T21@SUBQ_IN

5 - SEL$94CC97E7 / T1@MAIN

6 - SUBQ_NOT / T23@SUBQ_NOT

7 - SEL$94CC97E7 / T1@MAIN

Query blocks main and subq_in have disappeared - transformed into a query block

called sel$94cc97e7. Notice how operation 6 is a "pushed" filter subquery.

20

Topic

page 39

Jonathan Lewis

© 2002 - 2018

Query Blocks (c)

Add (just) the /*+ unnest */ hint to subquery "subq_not":

| Id | Operation | Name | Rows | Bytes | Cost |

| 0 | SELECT STATEMENT | | 1 | 175 | 53 |

| 1 | MERGE JOIN ANTI NA | | 1 | 175 | 53 |

| 2 | SORT JOIN | | 1 | 136 | 35 |

| 3 | NESTED LOOPS | | 1 | 136 | 20 |

| 4 | NESTED LOOPS | | 1 | 136 | 20 |

| 5 | SORT UNIQUE | | 1 | 13 | 2 |

| 6 | TABLE ACCESS FULL | T21 | 1 | 13 | 2 |

|* 7 | INDEX RANGE SCAN | T1_I2 | 1 | | 1 |

| 8 | TABLE ACCESS BY INDEX ROWID| T1 | 1 | 123 | 2 |

|* 9 | SORT UNIQUE | | 1 | 39 | 18 |

| 10 | TABLE ACCESS FULL | T23 | 1 | 39 | 2 |

Query Block Name / Object Alias (identified by operation id):

1 - SEL$17E058DA

6 - SEL$17E058DA / T21@SUBQ_IN

7 - SEL$17E058DA / T1@MAIN

8 - SEL$17E058DA / T1@MAIN

10 - SEL$17E058DA / T23@SUBQ_NOT

Forcing the optimizer to unnest the subq_not subquery we end up with a single query

block - with a name derived from the three original names.

Topic

page 40

Jonathan Lewis

© 2002 - 2018

Query Blocks (d)

Add /*+ no_unnest */ to both subqueries

| Id | Operation | Name | Rows | Bytes | Cost |

| 0 | SELECT STATEMENT | | 1 | 136 | 22 |

| 1 | NESTED LOOPS | | 1 | 136 | 20 |

| 2 | NESTED LOOPS | | 1 | 136 | 20 |

| 3 | SORT UNIQUE | | 1 | 13 | 2 |

| 4 | TABLE ACCESS FULL | T21 | 1 | 13 | 2 |

|* 5 | INDEX RANGE SCAN | T1_I2 | 1 | | 1 |

|* 6 | TABLE ACCESS FULL | T23 | 1 | 39 | 2 |

| 7 | TABLE ACCESS BY INDEX ROWID| T1 | 1 | 123 | 2 |

Query Block Name / Object Alias (identified by operation id):

1 - SEL$94CC97E7

4 - SEL$94CC97E7 / T21@SUBQ_IN

5 - SEL$94CC97E7 / T1@MAIN

6 - SUBQ_NOT / T23@SUBQ_NOT

7 - SEL$94CC97E7 / T1@MAIN

Query blocks main and subq_in have disappeared - transformed into a query block

called sel$94cc97e7. Notice how operation 6 is a "pushed" filter subquery.

21

Topic

page 41

Jonathan Lewis

© 2002 - 2018

Query Blocks (e)

ANSI isn't friendly!

select

t1.object_name, t2.object_type, t3.owner

from

t1

join

t2

on t2.object_id = t1.object_id

join

t3

on t3.data_object_id = t2.data_object_id

/

This looks like a simple three table join.

How many query blocks do you think are involved ?

Topic

page 42

Jonathan Lewis

© 2002 - 2018

Query Blocks (f)

The optimizer has a series of generic transformations to transform "ANSI" SQL

into legacy Oracle SQL before optimising. The result is that a simple join of N

tables turns into a starting N-1 query blocks:

| Id | Operation | Name | Rows | Bytes | Cost |

| 0 | SELECT STATEMENT | | 6178 | 331K| 683 |

|* 1 | HASH JOIN | | 6178 | 331K| 683 |

|* 2 | TABLE ACCESS FULL | T3 | 6141 | 49128 | 223 |

|* 3 | HASH JOIN | | 6141 | 281K| 457 |

|* 4 | TABLE ACCESS FULL| T2 | 6141 | 98256 | 223 |

| 5 | TABLE ACCESS FULL| T1 | 84495 | 2557K| 223 |

How do you hint a query block when you don't even know what query block it was

originally in ? (Unless you've looked through the alias information (and outline)).

Query Block Name / Object Alias (identified by operation id):

1 - SEL$9E43CB6E

2 - SEL$9E43CB6E / T3@SEL$2

4 - SEL$9E43CB6E / T2@SEL$1

5 - SEL$9E43CB6E / T1@SEL$1

22

Topic

page 43

Jonathan Lewis

© 2002 - 2018

Multiple Query Blocks (a)

• Subqueries in the from clause

• Scalar subqueries in updates

• "with" subqueries (common table expressions - CTEs)

• Scalar subqueries in the select list

Topic

page 44

Jonathan Lewis

© 2002 - 2018

MQB - updates (a)

update t1 target

set data_object_id = (

select max(t2.data_object_id)

from t2

where t2.object_name = target.object_name

),

owner = (

select max(t3.owner)

from t3

where t3.object_type = target.object_type

)

where

object_id = (

select max(source.object_id)

from t1 source

where source.owner = target.owner

)

;

We have an update that has to identify some rows, and then uses scalar subqueries to

find values to update two separate columns in the table.

23

Topic

page 45

Jonathan Lewis

© 2002 - 2018

MQB - updates (b)

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

| 0 | UPDATE STATEMENT | | 25 | 3175 | 20832 (1)|

| 1 | UPDATE | T1 | | | |

|* 2 | HASH JOIN | | 25 | 3175 | 807 (2)|

| 3 | VIEW | VW_SQ_1 | 25 | 1975 | 407 (3)|

| 4 | SORT GROUP BY | | 25 | 275 | 407 (3)|

| 5 | TABLE ACCESS FULL| T1 | 84495 | 907K| 400 (1)|

| 6 | TABLE ACCESS FULL | T1 | 84495 | 3960K| 400 (1)|

| 7 | SORT AGGREGATE | | 1 | 28 | |

|* 8 | TABLE ACCESS FULL | T2 | 2 | 56 | 400 (1)|

| 9 | SORT AGGREGATE | | 1 | 15 | |

|* 10 | TABLE ACCESS FULL | T3 | 2914 | 43710 | 400 (1)|

The update operation has three direct children. The first child identifies the rows to

update, the 2nd and subequent children show the plans for the "set" subqueries.

NB: the cost of an update without the set subqueries is derived as the cost of the statement
select target.rowid from …

Topic

page 46

Jonathan Lewis

© 2002 - 2018

MQB - "with" subquery (a)

with objects as (

select object_type, object_name, owner, object_id

from all_objects -- a local table copy of the view

),

object_types as (

select distinct owner, object_type

from objects

),

owners as (

select distinct owner

from object_types

)

select ot.owner, count(*)

from object_types ot

where ot.owner = (select max(ow.owner) from owners ow)

group by ot.owner

;

I have a cascade of CTEs here - and Oracle can decide which ones are worth turning

into "temporary tables".

24

Topic

page 47

Jonathan Lewis

© 2002 - 2018

MQB - "with" subquery (b)

| Id | Operation | Name | Rows | Bytes |

| 0 | SELECT STATEMENT | | 25 | 150 |

| 1 | TEMP TABLE TRANSFORMATION | | | |

| 2 | LOAD AS SELECT | SYS_TEMP_0FD9D6646_D6D4524 | | |

| 3 | HASH UNIQUE | | 513 | 7695 |

| 4 | TABLE ACCESS FULL | ALL_OBJECTSs | 84498 | 1237K|

| 5 | HASH GROUP BY | | 25 | 150 |

|* 6 | VIEW | | 513 | 3078 |

| 7 | TABLE ACCESS FULL | SYS_TEMP_0FD9D6646_D6D4524 | 513 | 7695 |

| 8 | SORT AGGREGATE | | 1 | 66 |

| 9 | VIEW | | 513 | 33858 |

| 10 | TABLE ACCESS FULL | SYS_TEMP_0FD9D6646_D6D4524 | 513 | 7695 |

Predicate Information (identified by operation id):

6 - filter("OT"."OWNER"= (SELECT MAX("OWNER") FROM (SELECT

/*+ CACHE_TEMP_TABLE ("T1") */ "C0" "OWNER","C1" "OBJECT_TYPE"

FROM "SYS"."SYS_TEMP_0FD9D6646_D6D4524" "T1") "OBJECT_TYPES"))

The optimizer has decided it can inline and merge the objects declaration then create

and use a temporary table object_types, deriving owners as an inline view.

Loading the temporary table and running the query are both child rows to "temp table transformation"

Note the "pushed" subquery effect at operation 8.

Topic

page 48

Jonathan Lewis

© 2002 - 2018

MQB - "with" subquery (c)

with objects as (

select /*+ materialize */

object_type, object_name, owner, object_id

from all_objects -- a local table copy of the view

),

object_types as (

select /*+ materialize */ distinct owner, object_type

from objects

),

owners as (

select /*+ materialize */ distinct owner

from object_types

)

select ot.owner, count(*)

from object_types ot

where ot.owner = (select max(ow.owner) from owners ow)

group by ot.owner

;

There are two hints to control "with" subqueries. "Materialize" tells Oracle to create

a temporary table, "Inline" tells Oracle not to.

25

Topic

page 49

Jonathan Lewis

© 2002 - 2018

MQB - "with" subquery (d)

| Id | Operation | Name | Rows | Bytes |

| 0 | SELECT STATEMENT | | 25 | 150 |

| 1 | TEMP TABLE TRANSFORMATION | | | |

| 2 | LOAD AS SELECT | SYS_TEMP_0FD9D6649_D6D4524 | | |

| 3 | TABLE ACCESS FULL | ALL_OBJECTS | 84498 | 3795K|

| 4 | LOAD AS SELECT | SYS_TEMP_0FD9D664A0FD9D664A_D6D4524 | | |

| 5 | HASH UNIQUE | | 513 | 7695 |

| 6 | VIEW | | 84498 | 1237K|

| 7 | TABLE ACCESS FULL | SYS_TEMP_0FD9D6649_D6D4524 | 84498 | 3795K|

| 8 | LOAD AS SELECT | SYS_TEMP_0FD9D664B_D6D4524 | | |

| 9 | HASH UNIQUE | | 25 | 150 |

| 10 | VIEW | | 513 | 3078 |

| 11 | TABLE ACCESS FULL | SYS_TEMP_0FD9D664A0FD9D664A_D6D4524 | 513 | 7695 |

| 12 | HASH GROUP BY | | 25 | 150 |

|*13 | VIEW | | 513 | 3078 |

| 14 | TABLE ACCESS FULL | SYS_TEMP_0FD9D664A0FD9D664A_D6D4524 | 513 | 7695 |

| 15 | SORT AGGREGATE | | 1 | 66 |

| 16 | VIEW | | 25 | 1650 |

| 17 | TABLE ACCESS FULL | SYS_TEMP_0FD9D664B_D6D4524 | 25 | 150 |

We’ve loaded three temporary tables - deriving each one from the previous generated

temporary table. Then used the last two to execute the query.

13 - filter("OT"."OWNER"= (SELECT MAX("OW"."OWNER") FROM (

SELECT /*+ CACHE_TEMP_TABLE ("T1") */ "C0" "OWNER"

FROM "SYS"."SYS_TEMP_0FD9D664B_D6D4524" "T1") "OW"))

Topic

page 50

Jonathan Lewis

© 2002 - 2018

MQB - select list (a)

select

ss1.location,

ss1.sales,

(select

/*+ index (ss2 ss2_fk_area) */

sum(sales)

from

ss_test_2 ss2

where

ss2.area = ss1.area

and ss2.location_type = ss1.location_type

) area_sales

from

ss_test ss1

where

ss1.location_type not in ('Type_001','Type_002')

and ss1.location_type like 'Type_00%'

;

One way of getting correlated summaries in a query is simply to execute a correlated

subquery for each row.

26

Topic

page 51

Jonathan Lewis

© 2002 - 2018

MQB - select list (b)

| Id | Operation | Name | Rows | Bytes | Cost |

| 0 | SELECT STATEMENT | | 8574 | 293K| 11 |

| 1 | SORT AGGREGATE | | 1 | 24 | |

|* 2 | TABLE ACCESS BY INDEX ROWID| SS_TEST_2 | 10 | 240 | 58 |

|* 3 | INDEX RANGE SCAN | SS2_FK_AREA | 200 | | 2 |

|* 4 | TABLE ACCESS FULL | SS_TEST | 8574 | 293K| 11 |

Predicate Information (identified by operation id):

2 - filter("SS2"."LOCATION_TYPE"=:B1)

3 - access("SS2"."AREA"=:B1)

4 - filter("SS1"."LOCATION_TYPE"<>'Type_001' AND

"SS1"."LOCATION_TYPE"<>'Type_002' AND

"SS1"."LOCATION_TYPE" LIKE 'Type_00%')

Note how the final cost is clearly wrong - it doesn't reflect the cost of executing the

scalar subquery at all (let alone 8,574 times). In 12c the cost changes to 55,111

The last child in the plan is the main query and is the first thing to operate. The previous child

operations are then nominally executed once for each row in the last child.

Topic

page 52

Jonathan Lewis

© 2002 - 2018

MQB - select list (c)

| Id | Operation | Name | Rows | Bytes | Cost |

| 0 | SELECT STATEMENT | | 8574 | 510K| 62 |

|* 1 | HASH JOIN RIGHT OUTER| | 8574 | 510K| 62 |

| 2 | VIEW | VW_SSQ_1 | 672 | 17472 | 50 |

| 3 | HASH GROUP BY | | 672 | 16128 | 50 |

|* 4 | TABLE ACCESS FULL | SS_TEST_2 | 9500 | 222K| 11 |

|* 5 | TABLE ACCESS FULL | SS_TEST | 8574 | 293K| 11 |

Predicate Information (identified by operation id):

1 - access("ITEM_1"(+)="SS1"."AREA" AND

"ITEM_2"(+)="SS1"."LOCATION_TYPE")

4 - filter("SS2"."LOCATION_TYPE"<>'Type_001' AND

"SS2"."LOCATION_TYPE"<>'Type_002' AND

"SS2"."LOCATION_TYPE" LIKE 'Type_00%')

5 - filter("SS1"."LOCATION_TYPE"<>'Type_001' AND

"SS1"."LOCATION_TYPE"<>'Type_002' AND

"SS1"."LOCATION_TYPE" LIKE 'Type_00%')

12c can unnest the scalar subquery and transform the query into an outer join (outer

to allow for the scalar subquery returning no rows). The unnest hint will block this.

27

Topic

page 53

Jonathan Lewis

© 2002 - 2018

MQB - select list (d)

select grp, id

case

when grp = 4 then

to_char((

select count(*)

from pt_range pt2

where id = to_number(pt1.small_vc)

),'9999'

)

when grp = 5 then

to_char((

select count(*)

from pt_range pt2

where id = 10*to_number(pt1.small_vc)

),'XXXX'

)

else null

end as test,

from pt_range pt1

where id between 200 and 300

There are still some cases - even in 18.3 where the indentation you get from

dbms_xplan is wrong. The two scalar subqueries are clearly at the same "depth".

Topic

page 54

Jonathan Lewis

© 2002 - 2018

MQB - select list (e)

| Id | Operation | Name | Rows | Bytes | Pstart| Pstop |

| 0 | SELECT STATEMENT | | 102 | 1020 | | |

| 1 | SORT AGGREGATE | | 1 | 4 | | |

| 2 | PARTITION RANGE SINGLE | | 1 | 4 | KEY | KEY |

|* 3 | INDEX UNIQUE SCAN | PT_PK | 1 | 4 | KEY | KEY |

| 4 | SORT AGGREGATE | | 1 | 4 | | |

| 5 | PARTITION RANGE SINGLE| | 1 | 4 | KEY | KEY |

|* 6 | INDEX UNIQUE SCAN | PT_PK | 1 | 4 | KEY | KEY |

| 7 | PARTITION RANGE SINGLE | | 102 | 1020 | 2 | 2 |

|* 8 | TABLE ACCESS FULL | PT_RANGE | 102 | 1020 | 2 | 2 |

Query Block Name / Object Alias (identified by operation id):

1 - SEL$2

3 - SEL$2 / PT2@SEL$2

4 - SEL$3

6 - SEL$3 / PT2@SEL$3

7 - SEL$1

8 - SEL$1 / PT1@SEL$1

Predicate Information (identified by operation id):

3 - access("ID"=TO_NUMBER(:B1))

6 - access("ID"=10*TO_NUMBER(:B1))

8 - filter("ID"<=300)

According to the plan the second scalar subquery is somehow sub-ordinate to / called

before the first one. Note the KEY/KEY partition information.

28

Topic

page 55

Jonathan Lewis

© 2002 - 2018

How often (a)

update t1

set n2 = (

select

/*+ no_unnest */

t2.n1

from t2

where t2.id = t1.n1

)

where exists (

select

/*+ no_unnest */

t2.n1

from t2

where t2.id = t1.n1

)

;

We set statistics_level = all and set serveroutput off before running this query.

The two scalar subqueries are identical, and we're about to update 988 rows of 1,000.

Topic

page 56

Jonathan Lewis

© 2002 - 2018

How often (b)

select * from table(dbms_xplan.display_cursor(null,null,'allstats last'));

| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers |

| 0 | UPDATE STATEMENT | | 1 | | 0 |00:00:00.06| 2585 |

| 1 | UPDATE | T1 | 1 | | 0 |00:00:00.06| 2585 |

|* 2 | FILTER | | 1 | | 988 |00:00:00.01| 315 |

| 3 | TABLE ACCESS FULL| T1 | 1 | 1000 | 1000 |00:00:00.01| 19 |

|* 4 | TABLE ACCESS FULL| T2 | 148 | 1 | 147 |00:00:00.01| 296 |

|* 5 | TABLE ACCESS FULL | T2 | 147 | 1 | 147 |00:00:00.01| 294 |

Predicate Information (identified by operation id):

2 - filter(IS NOT NULL) -- missing subquery predicates

4 - filter("T2"."ID"=:B1) -- bind variables for correlated values

5 - filter("T2"."ID"=:B1)

We don't execute the "where" and "update" subqueries 1,000 and 988 times

respectively because of scalar subquery caching - but should we ever run the 2nd ?

29

Topic

page 57

Jonathan Lewis

© 2002 - 2018

What else happened ?

• SQL Monitor

• Case Study - in very small print.

