High-energy neutrinos from the cosmos

A theoretical perspective .

https://multimessenger.desy.de/

Winter, Walter DESY, Zeuthen, Germany

ALPS 2019: An Alpine LHC physics summit Obergurgl University Center April 22-27, 2019

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Contents

- Introduction: Recent results
- Origin of the diffuse flux
- Particle physics treatment in cosmic acclerators
- A common origin of the diffuse UHECRs and neutrinos?
- Neutrinos from the AGN blazar TXS 0506+056
- Flavor composition ... and particle physics
- Summary and conclusions

Recent results

A very short experimental summary

Observing TeV-PeV neutrinos with IceCube

Muon track:

- From v_{μ}
- From v_{τ} (17 %)

Better directional info

Cascade (shower):

- From v_e
- From v_{τ}
- From v_e, v_μ, v_τ NC interactions

Better energy info

Diffuse neutrino flux – observed in different event samples

A flux of high energy cosmic neutrinos (HESE sample)

Neutrinos from the AGN blazar TXS 0506+056

Sept. 22, 2017: A neutrino in coincidence with a blazar flare

Science 361 (2018) no. 6398, eaat1378

2014-2015: A (orphan) neutrino flare found from the same object in historical data

Fermi-LAT data; Padovani et al, MNRAS 480 (2018) 192

Origin of the diffuse flux?

Conceptual issues and astrophysical constraints

Stacking limits ...

Gamma-Ray Bursts (GRBs)

- Transients, time variability
- High luminosity over short time

- Less than ~1% of observed ν flux

IceCube, Nature 484 (2012) 351; Newest update: arXiv:1702.06868

... for the most prominent sources populations

Active Galactic Nuclei (AGNs)

- Steady emission with flares
- Lower luminosity, longer duration

- Less than ~25% of observed ν flux

IceCube, Astrophys. J. 835 (2017) 45 (see proceedings of ICRC 2017 for updates)

DESY. | High Energy Neutrinos | Winter Walter, April 22-27, 2019, ALPS 2019, Obergurgl, Austria

Conceptual challenges

Gamma-ray diffuse flux

Multiplet or point source limits

Non-observation of multiplets limits source density of powerful sources

Constrains spectral index for non-AGN contributions (starburst galaxies, ...)

Bechtol et al, 2017; Palladino et al, arXiv:1812.04685 Fig. from Murase, Waxman, 2016; see Kowalski, 2014; Ahlers, Halzen, 2014; see also analyses performed by IceCube, arXiv:1807.11492+1811.07979 (somewhat weaker limits)

Other challenges

- Observed TGM flux harder than HESE
- A ν_µ with a reconstructed muon energy of 4.5 PeV
 Aartsen et al, ApJ 833 (2016) 3
 Primaries with E > 100 PeV?
- Anisotropy for HESE events with
 > 100 TeV deposited energy.
 (data: Aartsen et al, arXiv:1710.01191)
 Evidence for Galactic contribution (2σ)?

Fig. from: Palladino, Winter, A&A 615 (2018) A168

Multiple contributions to diffuse flux? A possible scenario.

Neutrino	energy	[TeV]
	SS. 35	[]

Name	Description/examples	Neutrino prod.
Atmosph.	Residual atmospheric backgrounds (atmospheric muons or neutrinos) passing the veto systems	p, K decay, charmed mesons
Galactic	Neutrinos from Milky Way, e.g. from cosmic ray int. with gas or point sources	pp (or Ap) int.
X _{pp}	EXtragalactic neutrinos, e.g. starburst galaxies, ~E ⁻² spectrum (Fermi acc.!)	pp (or Ap) int.
Χ _{ργ}	EXtragalactic v with hard (~ E^{-1}) spectrum; highest E; UHECR connection?	pγ (or Aγ) int.

Palladino, Winter, A&A 615 (2018) A168

Conclusions for different event samples

Through-going muons are most promising sample for extragalactic origin

HESE cascades

ID	Deposited energy [TeV]	Initial neutrino energy within 67% C.L. [TeV]	Galactic latitude (°)	Galactic longitude (°)	Atmospheric %	Galactic %	Х-рр %	Х-рү %
1	47,6	53	-56,26	167,57	80,6	0,0	18,6	0,8
2	117	129	-12,76	7,86	25,7	53,9	18,7	1,7
4	165,4	183	8,88	-71,20	43,6	5,6	46,2	4,6
6	28,4	31	11,77	-107,66	89,2	0,0	10,4	0,4
7	34,3	38	-72,10	-64,71	86,6	0,0	12,9	0,5
9	63,2	70	54,41	-167,29	74,1	0,0	24,7	1,2
10	97,2	107	-83,32	13,88	62,1	0,0	35,5	2,3
11	88,4	98	39,03	-106,87	64,9	0,0	33,0	2,0
12	104,1	115	-29,67	-14,50	54,7	8,9	34,0	2,4
14	1040,7	1151	0,54	0,86	6,1	51,7	25,5	16,7
15	57,5	64	-23,67	-12,29	61,8	19,1	18,3	0,9
16	30,6	34	40,00	-57,18	87,6	0,7	11,3	0,4
17	199,7	221	37,33	30,67	39,8	2,7	51,4	6,0
19	71,5	79	-36,09	-91,35	70,9	0,0	27,6	1,5
20	1140,8	1261	-47,17	-71,50	12,3	0,0	53,3	34,4
21	30,2	33	-85,51	81,54	88,4	0,0	11,2	0,4
22	219,5	243	-19,66	17,64	27,4	28,2	39,2	5,3
24	30,5	34	-6,84	19,51	19,1	78,3	2,5	0,1
25	33,5	37	-9,87	21,69	30,3	65,1	4,4	0,2
26	210	232	45,77	-152,20	39,6	0,0	53,8	6,6
27	60,2	67	10,84	-126,55	75,3	0,0	23,5	1,1
29	32,7	36	6,83	76,01	84,6	3,0	11,9	0,4
[.]							

HESE tracks

ID	Deposited energy [TeV]	Initial neutrino energy within 67% C.L. [TeV]	Galactic latitude (°)	Galactic longitude (°)	Atmospheric %	Galactic %	Х-рр %	Х-рү %
3	78,7	295	5,18	-107,74	72,1	0,0	24,4	3,6
5	71,4	267	7,22	-142,78	74,3	0,0	22,7	3,0
8	32,6	122	40,47	-69,10	88,4	0,0	10,8	0,7
13	252,7	946	-4,84	162,19	42,3	0,0	41,0	16,7
18	31,5	118	-65,97	33,14	88,9	0,0	10,4	0,7
23	82,2	308	46,38	-33,45	71,0	0,0	25,1	3,8
28	46,1	173	-10,74	-65,56	83,1	0,0	15,5	1,4
37	30,8	115	66,30	-136,03	89,2	0,0	10,2	0,6
38	200,5	751	-1,30	-163,52	48,2	0,0	38,9	12,9
43	46,5	174	38,69	-39,88	82,9	0,0	15,7	1,4
44	84,6	317	-46,25	65,78	70,4	0,0	25,6	4,0
45	429,9	1610	-24,08	-55,18	30,5	0,0	41,9	27,5
47	74,3	278	48,67	113,12	73,4	0,0	23,4	3,2
53	27,6	103	11,53	-20,97	90,5	0,0	9,0	0,5
58	52,6	197	-14,39	-117,65	80,7	0,0	17,6	1,8
61	53,8	201	-48,57	-152,96	80,2	0,0	17,9	1,9
62	75,8	284	75,33	-73,94	72,9	0,0	23,7	3,3
63	97,4	365	52,95	-118,64	66,9	0,0	28,1	5,0
71	73,5	275	-27,92	-136,75	73,6	0,0	23,2	3,2
76	126,3	473	36,26	10,05	60,3	0,0	32,5	7,2
78	56,7	212	-53,26	103,10	79,2	0,0	18,8	2,0
82	159,3	596	40,83	21,18	54,2	0,0	36,0	9,8

Through-going muons

ID	Deposited energy [TeV]	Initial neutrino energy within 67% C.L. [TeV]	Galactic latitude (°)	Galactic longitude (°)	Atmospheric %	Galactic %	Х-рр %	Х-рү %
1	480	1797,1	-56,90	155,91	18,5	0,0	48,3	33,2
2	250	936,0	-8,36	50,93	24,2	0,0	55,6	20,2
3	340	1272,9	-32,60	93,04	21,4	0,0	52,7	25,9
4	260	973,4	45,74	171,42	23,8	0,0	55,3	20,9
5	230	861,1	-10,46	63,41	25,1	0,0	56,1	18,8
6	770	2882,8	33,5268748	33,63	15,0	0,0	40,4	44,6
7	460	1722,2	20,13	38,05	18,8	0,0	48,9	32,3
8	660	2471,0	-34,56	71,33	16,1	0,0	43,2	40,8
9	950	3556,7	-11,55	-153,66	13,6	0,0	36,5	49,9
10	520	1946,8	-1,83	37,50	9,4	41,4	25,4	23,8
11	240	898,5	-21,92	46,32	24,6	0,0	55,9	19,5
12	300	1123,2	50,34	32,26	22,5	0,0	54,0	23,5
13	210	786,2	23,16	62,37	26,0	0,0	56,7	17,4
14	210	786,2	-26,38	54,90	26,0	0,0	56,7	17,4
15	300	1123,2	51,14	-2,78	22,5	0,0	54,0	23,5
16	660	2471,0	-37,84	152,62	16,1	0,0	43,2	40,8
17	200	748,8	82,75	73,54	26,5	0,0	56,9	16,6
18	260	973,4	-40,19	61,58	23,8	0,0	55,3	20,9
19	210	786,2	57,74	-32,38	26,0	0,0	56,7	17,4
20	750	2807,9	69,98	-154,13	15,2	0,0	40,9	43,9
21	670	2508,4	-1,01	-163,88	16,0	0,0	42,9	41,1
22	400	1497,6	45,21	-7,24	20,0	0,0	50,8	29,2
23	390	1460,1	-47,39	153,90	20,2	0,0	51,1	28,7
24	850	3182,3	6,12	66,95	14,3	0,0	38,6	47,1

[...]

Extragalactic flux dominant Low "background" (atm. + Galactic)

Atmospheric BG dominant Possible **Galactic** component (soft!)

Atmospheric BG dominant Extragalactic contribution "hidden"

Particle physics treatment in cosmic accelerators

Particle acceleration ... a pragmatic perspective

Lorentz force = centrifugal force $\Rightarrow E_{max} \sim Z c B R$

•

 ∞

Example: *Fermi shock acceleration*

- Energy gain per cycle: E $\rightarrow \eta$ E
- Escape probability per cycle: P_{esc}
- Yields a **power law** spectrum ~ $E^{\frac{\ln P_{esc}}{\ln \eta}-1}$
- In P_{esc}/In η ~ -1 (from compression ratio of a strong shock), and E⁻² is the typical "textbook" spectrum

 Theory of acceleration challenging, but we **do observe** power law spectra in Nature

For multimessenger perspective: adopt pragmatic point of view! (we know that it works, somehow ...,

Secondary production: Particle physics 101?

• Beam dump picture (particle physics)

•

- Astrophysical challenges:
 - Feedback between beam and target (e.g. photons from π^0 decays)
 - Need self-consistent description called radiation model
 - Density *in* source, in general, **not** *what you get* from the source

Global radiation models (theory)

• Time-dependent PDE system, one PDE per particle species i

$$\frac{\partial N_i}{\partial t} = \frac{\partial}{\partial E} \left(-b(E)N_i(E) \right) - \frac{N_i(E)}{t_{\rm esc}} + Q(E)$$

Cooling (continuous) Escape Injection

b(E)=-E t⁻¹_{loss} "radiation processes" Q(E,t) [GeV⁻¹ cm⁻³ s⁻¹] N(E,t) [GeV⁻¹ cm⁻³] particle spectrum including spectral effects

• Injection: species *i* from acceleration zone, and from other species *j*:

$$\begin{split} Q(E) &= Q_i(E) + Q_{ji}(E) \\ Q_{ji}(E_i) &= \int dE_j \, N_j(E_j) \, \frac{\Gamma_j^{\rm IT}(E_j)}{\int_j^{IT}(E_j)} \, \frac{dn_{j \to i}^{\rm IT}}{dE_i}(E_j, E_i) \\ \end{split}$$

$$\begin{split} & \text{Density}_{\text{other}} \quad \underset{\text{species}}{\text{stermation}} \quad \underset{\text{rate}}{\text{Inter-}} \quad \underset{\text{species}}{\text{Re-distribution}} \\ \end{array}$$

Strongly forward peaked spectra in interaction frame (e.g. shock rest frame)

→ Re-distribution function narrow + peaked

E.g.
$$E_v \sim 0.25 E_{\pi}$$

~ 0.25 x 0.2 x E_p = 0.05 E_p

A common origin of the diffuse UHECRs and neutrinos?

UHECRs = Ultra High-Energy Cosmic Rays > 10¹⁸ eV

Cosmic rays: Spectrum and composition

- Charged particles, proton or heavier nuclei
- Extragalactic origin at highest energies (just as neutrinos); transition energy to Galactic contribution subject to discussion
- Composition probably heavy (= no pure protons) at highest energies (Auger)

Gaisser, Stanev, Tilav, 2013

Multi-messenger connection in photohadronic models

- Neutrino peak determined by maximal cosmic ray energy
- UHECR connection typically implies high neutrino energy peak energy >> 10⁶ GeV
- Interaction with target photons

 (Δ-resonance approximation for C.O.M. energy):

 $p + \gamma \to \Delta^+ \to \begin{cases} n + \pi^+ \to \nu \\ p + \pi^0 \to \gamma \end{cases}$

 E_{γ} [keV] ~ 0.01 Γ^2/E_{ν} [PeV] keV energies interesting!

• Photons from pion decay:

AGN neutrino spectrum (example)

 $\frac{\pi^0}{\pi^0} \rightarrow \gamma + \gamma$ Injected at $E_{\gamma,peak} \sim 0.1 E_{p,max}$ TeV–PeV energies interesting!

(but: EM cascade!)

Decouple the maximal UHECR and neutrino energies?

 Synchrotron cooling of secondaries (μ, π, K) in neutrino production chain:

 $\pi^+ \rightarrow \mu^+ + \nu_\mu, \\ \mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu$

 Spectra (μ, π, K) energy loss-steepend above critical energy (synchrotron cooling faster than decay)

$$E_{c}' = \sqrt{\frac{9\pi\epsilon_{0}m^{5}c^{7}}{\tau_{0}e^{4}B'^{2}}}$$

Depends on particle physics only (m, τ_0 of secondary), and **B**[•]

 Points towards sources with strong enough B': Gamma-Ray Bursts, (jetted) Tidal Disruption Events, ...

also: Kashti, Waxman, 2005; Lipari et al, 2007; ...

Example: low-luminosity Gamma-Ray Bursts (LL-GRBs as X_{py})

Boncioli, Biehl, WW, ApJ 872 (2019) 110, arXiv:1808.07481;

injection composition and escape from Zhang et al., PRD 97 (2018) 083010;

similar example (neutrinos-UHECRs): Tidal Disruption Events in Biehl, Boncioli, Lunardini, WW, Sci. Rep. 8 (2018) 10828

Neutrinos from the AGN blazar TXS 0506+056

A new era in multi-messenger astronomy?

AGN blazar

Science 361 (2018) no. 6398, eaat1378

https://multimessenger.desy.de/

High Energy Neutrinos | Winter Walter, April 22-27, 2019, ALPS 2019, Obergurgl, Austria

Multi-messengermulti-wavelength radiation models

 Requires solving a coupled PDE system for all involved species (e⁺, e⁻, p, γ, ...)

DESY. January 2019 issue

Conventional one zone model results

Hadronic (π cascade) models Hybrid or p synchr. models b eV keV MeV GeV TeV PeV EeV GeV TeV PeV Photons, Low Ep Leptonic Photons Muon neutrinos Hadronic, High Ep Muon Neutrinos, High Ep Hadronic GeV-v GeV-y -10 -10 Optical

TeV-γ TeV-γ TeV-γ J⁰ J

15

 $p^+\gamma \rightarrow p^+e^\pm$

pair production

25

30

20

log₁₀[Frequency (Hz)]

One radiation zone

Leptonic models

MeV

inverse

Compton

20

log₁₀[Frequency (Hz)]

keV

Leptonic

Optical

15

e synchr.

GeV

GeV-γ

TeV

PeV

No neutrinos

30

а

 $\log_{10}[E^2 dN/dE (erg cm^{-2} s^{-1})]$

-10

-11

-12

-13

10

• Violate X-ray data

-13

10

 Violate energetics (L_{edd}) by a factor of a few hundred or significantly exceed v energy

20

25

log₁₀(Frequency/Hertz)

30

35

-13₩ 10

15

Gao, Fedynitch, Winter, Pohl, Nature Astronomy 3 (2019) 88

25

See also Keivani et al, 2018; Sahakyan, 2018; Gokus et at, 2018; MAGIC collaboration, 2018; Cerutti et al, 2018; Murase et al, 2018; Padovani et al, 2018; Zhang, Li, 2018; Liu et al, 2018; He et al, 2018; Righi, Tavecchio, Inoue, 2018 for similar conclusions/alternatives

One way out: A compact core model

Time-dependent model:

Soft X-ray

GeV-y

Optical

7

-lard

а

SED amplitude relative to quiescent state

10

0

100

- Formation of a compact core (size: 1/30 of blob) ٠
- Significantly higher proton injection (factor 15) ٠

. ΤeV-γ

91

t(day)

0.27 per year

Increase of B-field, different properties of electron spectrum •

Other alternatives: External radiation fields, hadronuclear interactions

1.0

IceCube muon neutrino events per year

· 0.1

0.01

182

b

s⁻¹)]

 $og_{10}[E^2dN/dE([erg cm^{-2}])]$

-9

-10

-11

-12

-13

10

eV

Optical

15

20

98

Neutrino rate per year

The historical (2014-15) flare of TXS 0506+056

- Electromagnetic data during neutrino flare sparse (colored)
- Hardening in gamma-rays? (red shaded region)
- But: overall, no significant electromagnetic flare –

Padovani et al, 2018; Garrappa et al @ Fermi 2018 + arXiv:1901.10806

Different origin of neutrino signal?
 Jet-cloud/star interaction? Neutron beam? Wang et al, 2018; He et al, 2018; Murase et al, 2018

Theoretical challenge: Where did all the energy go to?

$$p + \gamma \to \Delta^+ \to \begin{cases} n + \pi^+ \Rightarrow \\ p + \pi^0 \Rightarrow \end{cases}$$

Comparable amounts of energy

ν

Options:

- Reprocessed and "parked" in E ranges without data?
- Leave source + dumped into the background light?
- Absorbed in some opaque region, e.g. dust/gas?

Fermi-LAT data; Padovani et al, MNRAS 480 (2018) 192

DESY. | High Energy Neutrinos | Winter Walter, April 22-27, 2019, ALPS 2019, Obergurgl, Austria

Radiation models for the historical neutrino flare

... yield at most 2-5 neutrino events without EM signature; sensitive to X-ray and VHE gamma-ray data

- Saturates X-ray constraint
- EM cascade hidden in MeV bump
- Optical and gamma-ray emissions from different regions
- Gamma-ray hardening

- Spectral softening/gamma-ray absorption at highest energies
- Complicated emission spectrum

Rodrigues, WW, et al, arXiv:1812.05939, ApJL 874 (2019) L29; see also Halzen, et al, arXiv:1811.07439; Reimer et al, 1812.05654

DESY. | High Energy Neutrinos | Winter Walter, April 22-27, 2019, ALPS 2019, Obergurgl, Austria

Flavor composition

... and particle physics

Flavor composition in terms of *flavor triangles*

Bustamante, Beacom, Winter, PRL 115 (2015) 16, 161302; Arguelles, Katori, Salvado, PRL 115 (2015) 161303

Measurement

Astrophys. J. 809 (2015) 1, 98; update: Taboada @ Neutrino 2018

Future perspectives

IceCube-Gen2

- Instrumented volume O(10) km³
- Purpose: "deliver substantial increases in the astrophysical neutrino sample for all flavors"
- PINGU-infill for oscillation physics (about 40 strings for lower threshold in DeepCore region). Neutrino mass ordering!
- Similar ideas in sea water (KM3NeT, ARCA/ORCA)

(arXiv:1401.2046, arXiv:1412.5106)

Physics potential

- IceCube-Gen2 could exclude the current best-fit point
- Allowed regions for specific flavor compositions at source even smaller

What ... if there is physics beyond the Standard Model?

Parameter space coverage including oscillation parameters and model parameters

From: Rasmussen et al, Phys. Rev. D96 (2017) 8, 083018; long list of references therein! Interesting potential to discover physics BSM

Summary and conclusions

Interpretation of results on astrophysical neutrinos

Origin of diffuse flux?

- Multiple constraints: Stacking limits, gamma-ray diffuse flux, multiplet constraints, anisotropy, different spectral indices in different datasets, ...
- May point towards contribution from multiple components

Common origin of diffuse neutrinos and UHECRs?

- A cutoff in the neutrino spectrum points towards sources with strong magnetic fields: LL-GRBs, jetted TDEs, ...
- High neutrino production efficiency ~ nuclear cascade develops; can be used to constrain parameter space [if sub-ankle UHECR transition to be described]

What did we learn from TXS 0506+056?

- Conventional one zone AGN models challenged, unless super-Eddington proton injection?
- Alternatives: Compact core, external radiation fields, hadronuclear interactions

 Historical flare much more challenging to describe; requires very high neutrino production efficiency accompanied by EM signatures